
Task Oriented Programming with
Purely Compositional Interactive Scalable Vector Graphics

Peter Achten1 Jurriën Stutterheim1 László Domoszlai1,2 Rinus Plasmeijer1
1Radboud University Nijmegen, Netherlands, ICIS, MBSD

2Eötvös Loránd University, Budapest, Hungary, Software Technology Department
P.Achten@cs.ru.nl, j.stutterheim@cs.ru.nl, l.domoszlai@science.ru.nl, rinus@cs.ru.nl

Abstract
iTasks enables the rapid creation of multi-user web-applications
by automatically generating form-based graphical user interfaces
(GUIs) for any first-order type. In some situations, however, form-
based GUIs are not sufficient or do not even make sense. We in-
troduce a purely compositional library for creating interactive user
interface components, based on Scalable Vector Graphics (SVG).
Not only are all images purely compositional, interaction on them
is specified by pure functions. The graphics library is integrated
with iTasks in such a way that one can easily switch between the
generic form-like GUIs and graphics-based user interfaces. Still, a
large part of the library is fully iTasks-agnostic and can therefore be
used in other contexts as well. We demonstrate the capabilities of
this library by implementing the multi-player Ligretto card game in
iTasks. This is an interesting case study because it requires a good
answer to the challenges of defining multi-user, distributed appli-
cations with appealing graphics.

Categories and Subject Descriptors D.1.1, I.3.6 [Applicative
(Functional) Programming, Methodology and Techniques]: Graph-
ics data structures and data types, Interaction techniques, Lan-
guages

Keywords Compositional Graphics, Interactive Graphics, Pure
Interaction Model, Scalable Vector Graphics, Image DSL, Task-
Oriented Programming, iTasks

1. Introduction
The iTask system [20, 22] (iTasks) is an implementation of the Task
Oriented Programming (TOP) paradigm in the strongly typed, lazy,
purely functional programming language Clean [21]. The TOP
paradigm has been designed to support the development of dis-
tributed, multi-user web applications in which humans and soft-
ware systems collaborate. iTasks offers a client-server infrastruc-
ture for the coordination of the tasks being defined, where typically
multiple people work closely together on the Internet, making use
of standard browsers. Types play a central role in iTasks: from any
first-order type, a form-like graphical user interface (GUI) is gener-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’2014, Oct 1–3, 2014, Boston, MA, USA.
Copyright c© 2014 ACM 978-1-4503-3284-2/14/10. . . $15.00.
http://dx.doi.org/10.1145/2746325.2746329

ated automatically. To do this successfully, it is vital that these in-
terfaces are purely compositional, i.e.: the meaning of an interface
is determined exclusively by its sub-components and their com-
position. This design principle can be traced back to Henderson’s
Functional Geometry [16], and indeed, the form-like GUIs gener-
ated by iTasks adhere to this property.

For many application domains, such as status displays or games,
communicating information via form-like GUIs is not informative
enough, or simply not appropriate. In these cases, it is better to
use dynamically adjustable interactive graphics. Several libraries
already exist that allow a programmer to create interactive graph-
ics using JavaScript and HTML 5. However, all libraries that we
have encountered impose a hidden state model on their API, e.g.,
by using some kind of single-canvas-abstraction, having attribute-
setting operations, using canvas-wide transformations, and so on.
Put in other words, they are not purely compositional. Lack of com-
positionality places the burden on the programmer to find out in
which order the graphics operations need to be performed to create
the desired images. A compositional image library would shift this
problem from the programmer to the library author.

For example, for the communication with domain experts, we
are currently developing Tonic [23]. It automatically generates a
kind of task flow-chart at compile-time, called a blueprint, that
displays an iTasks program’s static task structure. Blueprints are
augmented with concrete information at run-time to show which
concrete tasks have been created, who is working on what, what
progress has been made, how tasks are related to each other, etc.
Generating images requires compositionality, since their sizes are
generally not known beforehand. The lack of a compositional
graphics library has hampered the development of this tool in such
a way that we decided to design a new graphics library which is
compositional. In the implementation we have to compensate for
the lack of compositionality in the underlying libraries.

There are many real-world use-cases that can profit from com-
positional images. One such use-case is found in the naval domain.
Modern ships include interactive plotting-boards that schematically
display the ship’s layout. These boards are dynamically updated
when, e.g., calamities arise, such as fire or leaks. These same boards
can then be used interactively to coordinate calamity mitigation ef-
forts. At the same time, graphs and dials may indicate the fire’s
heat developments or a leak’s water levels. We anticipate that using
a compositional graphics library reduces the development time of
these plotting-boards, and similar systems, significantly.

Being able to draw images in a compositional way solves the
drawing problem, but we also need to be able to deal with interac-
tion. Fortunately, this is what iTasks is designed for. In this paper,
we introduce the Graphics.Scalable library, with which one can cre-
ate custom vector-based images in a purely compositional way. We
integrate this library seamlessly in the TOP concept of interactive

editor tasks in order to make images interactive, using only pure
functions.

The integration with iTasks turns out to be mutually beneficial.
The image library profits because interaction can be specified as
pure functions on model data types within editor tasks, and it can
rely on the existence of task combinators to specify application
behaviour. This greatly simplifies the API of the image library.
Vice versa, iTasks profits because the appearance and behaviour
of editor tasks can be customized to meet the needs of applications
that require custom user interfaces.

A real-world use-case, which we address specifically in this
paper, concerns multi-player, distributed games such as Trax [3]
and Ligretto. We demonstrate how the latter card game can be
created with the Graphics.Scalable image library and iTasks.

In this paper we make the following contributions:

• We present a purely compositional image API, implemented by
the Graphics.Scalable library.
• We define interaction on images using pure functions.
• We integrate the library in iTasks, reusing the existing editor

infrastructure.
• We demonstrate its usage by a case study: the Ligretto game.
• We mapGraphics.Scalable images to the Scalable Vector Graph-

ics (SVG) standard [8].
• We overcome the technical challenges imposed by the Internet’s

client/server architecture using editlets.

We start our explanation by first concentrating on static, purely
compositional images as provided in Graphics.Scalable in Section 2.
We show how to render the state of the card game Ligretto. This is
a non-trivial show-case of compositional rendering (you are invited
to browse ahead to Figure 1(l)). We show how static images are
made interactive in Section 3 and turn the example into a full-
fledged, multi-user application. The underlying technology of the
Graphics.Scalable library is SVG. Mapping to SVG has proven to be
challenging mostly because SVG adopts a single-canvas rendering
model which conflicts with the purely compositional nature of
Graphics.Scalable. The implementation is presented in Section 4.

Functional programming and creating images, whether they are
interactive or compositional or both, share a long research history.
The Graphics.Scalable API is greatly influenced by old and recent
research. In Section 5 we discuss this in more detail. The combi-
nation of the Graphics.Scalable image library and TOP is a novel
contribution to the field of programming interactive applications in
a functional style. We conclude in Section 6.

2. Compositional Static Images
In this section we describe the compositional image library (Sec-
tions 2.1–2.6). The concepts are illustrated step by step by render-
ing the entire state of the Ligretto card game (Section 2.7).

2.1 Image concepts
Conceptually, an image is an infinitely large, perfectly transparant
‘slide’ that renders a value of some model type m. This is captured
with the opaque type Image m. The ‘slide’ can be scaled, rotated,
and skewed. There is no global coordinate system. When defining
an image we impose a local coordinate system, the span box. The
span box consists of two dimensions: the x-span increases from
‘left’ to ‘right’ (perfectly horizontal) and the y-span increases from
‘above’ to ‘below’ (perfectly vertical). The unit of measure is pixel,
expressed with real values. Pixels get a physical interpretation
only when the image is actually rendered on a device. This is
natural in the context of scalable vector graphics. It is important
to note right away that the span box is not the same as the common

bounding box concept. The bounding box of an image is identified
by the minimum and maximum coordinates of its visual content.
In contrast, the span box of an image defines its conceptual size
that is used for layout. We deliberately allow visual content to exist
outside of the span box or within a ‘tighter’ bounding box. These
design decisions seem to be minor, but they are not: what an image
looks like should be unconnected with where it happens to be and
what its size is.

Stacking ‘slides’ is the only way to compose new images from
simpler ones. Conceptually, stacking creates a z-axis that is ori-
ented perfectly towards the viewer. ‘Higher’ images can obscure
‘lower’ images, depending on their opacity or masking attribute
(Section 2.3). We literally create a collage. The span boxes of the
images are used to specify their relative positions. For that purpose
layout combinators are used (Section 2.4). Note that in the pres-
ence of infinitely large images, a translation transformation does
not change the image, hence our library does not support image
translation. All we need to care about are the relative positions of
images.

2.2 Basic images
The image library supports common shapes as basic images:

:: Span / / an opaque data type

px :: Real -> Span / / (px x) represents x pixels

empty :: Span Span -> Image m
circle :: Span -> Image m / / Circle by diameter
ellipse :: Span Span -> Image m
rect :: Span Span -> Image m
xline :: Span -> Image m / / Lines are 1-dimensional
yline :: Span -> Image m / / Lines are 1-dimensional
line :: Slash Span Span -> Image m
text :: FontDef String -> Image m
normalFontDef :: String Real -> FontDef

:: Slash = Slash | Backslash

A number of aspects are worth noting. The empty image has no
visual content and only an x-span and a y-span. What a piece of
text looks like is determined by the used font as well as the content,
hence both must be part of its specification. The FontDef structure
collects all SVG font properties, such as font-size, font-weight,
font-style, etcetera. The convenience function (normalFontDef name
h) captures the frequently occuring situation that it suffices to
specify the font family name and font height in pixels (also the
y-span), setting all other font properties to "normal". The x-span
of the text image depends on the used font and text. The default
renderings of the circle, ellipse, and rect shapes is the same as the
default rendering of text, i.e.: using a stroke of one pixel and filled
with the default color black. These can be changed with the image
attributes (Section 2.3). Finally, lines are also drawn with a default
stroke of one pixel and use the color black. In the presence of
rotation a single line primitive is sufficient, but for convenience we
provide primitives for horizontal, vertical, and ‘tilted’ lines (xline,
yline, line). The Slash parameter identifies the imaginary rectangle
corner points that are ‘connected’ by the line (Slash, /, left-bottom
to right-top corner andBackslash, \, left-top to right-bottom corner).

2.3 Image attributes
Image attributes alter the appearence of visual elements without
altering the span box. In this way, the purpose of the span box does
not get mixed with the appearence of an image. In SVG, attributes
are defined with name-value pairs. We adopt the SVG names:

:: StrokeAttr m = { stroke :: SVGColor }
:: StrokeWidthAttr m = { strokewidth :: Span }

:: XRadiusAttr m = { xradius :: Span }
:: YRadiusAttr m = { yradius :: Span }
:: FillAttr m = { fill :: SVGColor }
:: OpacityAttr m = { opacity :: Real }
:: DashAttr m = { dash :: [Int] }
:: MaskAttr m = { mask :: Image m }

Each type constructor is made an instance of a type constructor
class tuneImage, having trivially derived operators and function.

class tuneImage attr :: (Image m) (attr m) -> Image m
(>@>) infixr 2 :: (attr m) (Image m) -> Image m | tuneImage attr
(<@<) infixl 2 :: (Image m) (attr m) -> Image m | tuneImage attr
tuneIf :: Bool (Image m) (attr m) -> Image m | tuneImage attr

For the specification of colors we adopt the extensive set of SVG
color names and the common RGB-triplets:

class toSVGColor a :: a -> SVGColor
instance toSVGColor String, RGB

:: RGB = { r :: Int, g :: Int, b :: Int }

2.4 Image composition
Images are composed by stacking. The images that are to be stacked
are given in a finite list. Elements with lower list-index positions
can be obscured by elements with higher list-index positions. This
leaves only the relative layout along the x-axis and y-axis unspec-
ified. This relative layout can be defined with or without a host
image. A host image serves two purposes: its span box is the local
coordinate system in which the positions of the stacked images are
specified, and it is the background image on top of which these im-
ages are stacked. If no host image is used, then the span box equals
the bounding box of the span boxes of the stacked images. Off-
sets are defined as a pair of an x-span and y-span value. The initial
layout of images is always computed without the offsets. The final
layout is obtained by adding the i-th offset to the initial position of
the i-th image.

:: Layout m :== [ImageOffset] -> [Image m] -> (Host m) -> Image m
:: Host m :== Maybe (Image m)
:: ImageOffset :== (Span, Span)

The image list must be finite. In the image layout functions, any
other list argument need not have the same length. If they are too
short, then padding values are defined for them (for offsets, this
is zero). If they are too long, then the surplus is not evaluated. In
this way we can keep the specification of the image list separate
from other concerns such as offsets and alignments in the other
image layout functions. It also avoids cluttering of the image list
specifications.

Conceptually, the image library has only one core image layout
function1:

collage :: Layout m

In a collage, the images are initially stacked with their left-top span
box corners aligned. The final position of the i-th image is obtained
by adding the i-th offset to that initial position.

Derived image layout functions are overlay, grid, above, below,
and margin. The first of them, overlay, adds horizontal and vertical
alignment options to the layout specification:

overlay :: [ImageAlign] -> Layout m

:: ImageAlign :== (XAlign, YAlign)
:: XAlign = AtLeft | AtMiddleX | AtRight
:: YAlign = AtTop | AtMiddleY | AtBottom

1 Although internally, other layout combinators are modeled explicitly as
well for reasons of efficiency.

In an overlay, the initial position of the images is determined using
the list of alignments: the position of the i-th image is determined
by the i-th alignment value. The final position of the i-th image is
obtained by adding the i-th offset value to the i-th initial position.

Images often need to be placed in a grid-like structure:

:: GridDimension = Rows Int | Columns Int
:: GridMajor = ColumnMajor | RowMajor
:: GridXLayout = LeftToRight | RightToLeft
:: GridYLayout = TopToBottom | BottomToTop
:: GridLayout :== (GridMajor, GridXLayout, GridYLayout)

grid :: GridDimension GridLayout [ImageAlign] -> Layout m

A grid’s dimensions are specified by providing either a number of
rows or a number of columns. The number of images then deter-
mines the corresponding number of columns or rows. The grid can
be populated in eight different ways, determined by the grid lay-
out: column-by-column or row-by-row (GridMajor), in combination
with left-to-right or right-to-left (GridXLayout), in combination with
top-to-bottom or bottom-to-top (GridYLayout). The span boxes and
alignments of the images are used to compute the images’ initial
positions, which are then fine-tuned with the corresponding offsets
to obtain all final positions.

Images are often placed beside or above each other:

beside :: [YAlign] -> Layout m
above :: [XAlign] -> Layout m

These are immediately derived from thegrid image layout function:
beside is one row of left-aligned images and above is one column of
top-aligned images.

Finally, it is useful to add margins around an image. This merely
increments the span box but does not alter the image. We follow the
convention of SVG to specify margins in several ways:

class margin a :: a (Image m) -> Image m
instance margin Span,

(Span, Span),
(Span, Span, Span),
(Span, Span, Span, Span)

The ‘one-span’ instance a imposes a uniform margin a around the
image, the ‘two-span’ instance (a, b) imposes margin a above/be-
low and b left/right of the image, the ‘three-span’ instance (a, b, c)
imposes margin a above, b left/right, c below the image, and the
‘four-span’ instance (a, b, c, d) imposes margin a above, b right, c
below, and d left of the image.

2.5 Symbolic span expressions
The image layout functions need to manipulate span values sym-
bolically in order to compute the desired image positions. Exam-
ples of symbolic span values are text width, image width and height,
column width, and row height. Examples of symbolic span compu-
tations are the usual arithmetical operations as well as negating the
value and taking the absolute value and determining the minimum
and maximum span value. These are covered by the following span-
definitions and instances of arithmetic operations:

:: ImageTag

/ / Symbolic span values:
textxspan :: FontDef String -> Span / / text width
imagexspan :: ImageTag -> Span / / image width
imageyspan :: ImageTag -> Span / / image height
columnspan :: ImageTag Int -> Span / / column width
rowspan :: ImageTag Int -> Span / / row height

/ / Symbolic span arithmetic:
instance zero Span
instance + Span

instance - Span
instance ~ Span
instance abs Span

class (*.) infixl 7 a :: a n -> a | toReal n
class (/.) infixl 7 a :: a n -> a | toReal n
instance *. Span, Real, Int
instance /. Span, Real, Int

minSpan :: [Span] -> Span
maxSpan :: [Span] -> Span

The opaque type ImageTag refers to an image. In case of imagexspan
and imageyspan, this can be any image; in case of columnspan and
rowspan, the image tag needs to be associated to a grid image. The
number argument of the latter two functions identifies the column
or row number, starting at index zero. If the image tag does not
happen to refer to an image, then the symbolic span value is zero.

Image tags must identify an image uniquely. This is guaranteed
by taking advantage of Clean’s uniqueness type system. The image
author has no means to define ImageTag values herself. Instead, the
top-level image rendering function is provided with an infinite list
of fresh image tag values. These image tag values come in pairs: the
first is a non-uniquely attributed image tag (of type ImageTag) and
the second is a uniquely attributed image tag (of type *ImageTag). To
identify an image, the image author is forced to use the uniquely
attributed image tag:

tag :: *ImageTag (Image m) -> Image m

In this way, it is statically guaranteed that an image tag is associated
with an image at most once. Even if the tagged image is used
several times, it is guaranteed that the tag identifies the very same
image. Hence, the corresponding symbolic span values have the
same size.

The types of the arithmetic operations should reflect the ‘physi-
cal’ dimension. Span values can be added and subtracted, and their
absolute and negated value can be computed. These operators do
not alter the dimension, so they can be defined using ordinary op-
erator overloading (+, -, abs, and ~). For other operators this is not
true: multiplication of span results in square span, division of span
results in a scalar value, and comparison of span values evaluates to
a boolean. For this reason the image library supports slightly differ-
ent overloaded operators for these purposes: *. and /. for multipli-
cation and division with a scalar value, and minSpan and maxSpan for
determining the smallest and largest span from a list of span val-
ues. The experiments that we have conducted so far indicate that
the lack of comparison operators on span values does not limit the
expressiveness of symbolic span expressions.

Finally, the symbolic span expression language in combination
with the collage image layout function is sufficiently expressive to
derive all other image layout functions (shown in Figure 6). This
expressive power is also available for the image author who can
use the same language to define new image layout patterns herself.

2.6 Image transformations
Any (composite) image can be subject to transformation:

rotate :: Angle (Image m) -> Image m
skewx :: Angle (Image m) -> Image m
skewy :: Angle (Image m) -> Image m
fit :: Span Span (Image m) -> Image m
fitx :: Span (Image m) -> Image m
fity :: Span (Image m) -> Image m
flipx :: (Image m) -> Image m
flipy :: (Image m) -> Image m

:: Angle
rad :: Real -> Angle
deg :: Real -> Angle

Angles are expressed as radians or as degrees. In general, the span
box of a rotated or skewed image differs from the span box of the
original image. Non-proportional scaling is done with fit which
ensures that the resulting image has exactly the specified x-span
and y-span. Proportional scaling is done with fitx and fity: they
ensure exact x-span and y-span, respectively and scale the other
span proportionally. Flipping, or mirroring, an image around its x-
or y-axis is done with flipx and flipy.

2.7 Case study: rendering the Ligretto state
In this section we demonstrate how to exploit the compositional
features of the image library to render the state of a game of
Ligretto. We first present the data types that model the game state
(Section 2.7.1) and then show how it is rendered (Section 2.7.2).

2.7.1 Ligretto model types
Ligretto is a card game for two, up to twelve players. In this paper
we restrict ourselves to a maximum of four players. Each player
has forty cards that come in four front colors: red, green, blue, and
yellow. The ten cards of one color are numbered on the front side
from one through ten. For identification purposes, the back sides of
the cards have a unique color for each player. These facts can be
modeled in a straightforward way:

:: Card = { back :: Color, front :: Color, no :: Int }
:: SideUp = Front | Back
:: Color = Red | Green | Blue | Yellow

At the start of the game, each player shuffles her cards, and
places them as follows on the table from right to left (Figure 1(k)):
• The row cards, which lie beside each other, faced up. The

number depends on the number of players (five cards in case
of two players, and up to three cards in case of four players).
• The ligretto pile, which is a pile of ten cards, faced up.
• The hand cards, which is divided in two sub piles: the concealed

pile which at start are all remaining cards, facing down, and the
discard pile which come from the concealed pile, facing up.

Finally, there is a shared area for all players, called the middle
(Figure 1(j)). In the middle, piles of cards of the same front color
are created by all players at the same time. A new pile must always
start with number 1, face up. Cards with a number n+1 are allowed
to be placed only on a middle pile of the same front color and
top-most card having number n. Although players are uniquely
identified via their color, we also keep track of their name and
render it in the game. These facts are modeled as follows:

:: NoOfPlayers :== Int
:: Middle :== [Pile]
:: Pile :== [Card]
:: Player = { color :: Color

, name :: String
, row :: RowPlayer
, ligretto :: Pile
, hand :: Hand
, seed :: Int }

:: RowPlayer :== [Card]
:: Hand = { conceal :: Pile, discard :: Pile }

no_of_cards_in_row :: NoOfPlayers -> Int
colors :: NoOfPlayers -> [Color]

The complete Ligretto game state consists of the middle card piles
and the participating players:

:: GameSt = { middle :: Middle, players :: [Player] }

We can now turn our attention to rendering this game state.

2.7.2 Ligretto rendering
The Ligretto game state is rendered step by step in a compositional
way. The individual images are shown in Figure 1.

We start with defining images for cards and attempt to make
them look similar to commercially available Ligretto cards. The
physical size of these cards is 58.5mm by 90.0mm, so we adopt
these values for the rendered cards as well:

card_width = px 58.5
card_height = px 90.0

The shape of a Ligretto card is that of a rectangle with rounded
corners (Figure 1(a)):
card_shape = rect card_width card_height

<@< {xradius = card_height /. 18}
<@< {yradius = card_height /. 18}

For rendering the text on cards we use the font family Verdana in
several sizes:

cardfont size = normalFontDef "Verdana" size

The model colors need to be mapped to SVG colors that best match
the physical cards. We select the following SVG colors:

instance toSVGColor Color where
toSVGColor Red = toSVGColor "darkred"
toSVGColor Green = toSVGColor "darkgreen"
toSVGColor Blue = toSVGColor "midnightblue"
toSVGColor Yellow = toSVGColor "gold"

We abbreviate white and black:

white = toSVGColor "white"
black = toSVGColor "black"

The number on the front side of a card is displayed in a large font
(Figure 1(b) shows big_no 7 Red):

big_no no color = text (cardfont 20.0) (toString no)
<@< {fill = white}
<@< {stroke = toSVGColor color}

At the back side of the card, the text Ligretto is displayed (Fig-
ure 1(c) shows ligretto Red):

ligretto color = text (cardfont 12.0) "Ligretto"
<@< {fill = toSVGColor "none"}
<@< {stroke = toSVGColor color}

With these image functions, we can render the front side (Fig-
ure 1(d) or back side (Figure 1(e)) of a card:

card_image :: SideUp Card -> Image m
card_image side card
| side === Front
= let no = margin (px 5.0)

(big_no card.no (no_stroke_color card.front))
in overlay [(AtMiddleX, AtTop), (AtMiddleX, AtBottom)] []

[no, rotate (deg 180.0) no] host
| otherwise
= overlay [(AtMiddleX, AtBottom)] []

[skewy (deg -20.0) (ligretto card.back)] host
where
host = Just (card_shape

<@< {fill = if (side === Front)
(toSVGColor card.front)
white})

The stroke color of the card number depends on the card color:

no_stroke_color :: Color -> Color
no_stroke_color Red = Blue
no_stroke_color Green = Red
no_stroke_color Blue = Yellow
no_stroke_color Yellow = Green

We introduce an ‘empty card’ that serves as a visual placeholder
for an empty pile (Figure 1(f)).

no_card_image :: Image m
no_card_image = overlay [(AtMiddleX,AtMiddleY)] []

[text (pilefont 12.0) "empty"] host
where
host = Just (card_shape <@< {fill = toSVGColor "lightgrey"})

The simplest way of rendering a pile of cards is to render only the
top-most card. However, in this way, players have no visual clue
how many cards the pile has. Instead, we display the cards as being
stacked on top of the ‘empty card’ in reversed order and each card
having a slightly increased vertical offset (Figure 1(g)):

pile_of_cards :: SideUp Pile -> Image m
pile_of_cards side pile
= overlay [] [(zero,card_height /. 18 *. dy) \\ dy <- [0 ..]]

(map (card_image side) (reverse pile)) host
where
host = Just no_card_image

For large piles it does not make a lot of sense to show all cards, so
instead we show the top-most ten cards (if present) of a pile. For
larger piles we include the total number of cards as a small number
above the rendered pile (Figure 1(h)).

pile_image :: SideUp Pile -> Image m
pile_image side pile
| no_of_cards > 10 = above [AtMiddleX] []

[text (pilefont 10.0)
(toString no_of_cards)

, top_cards_image]
Nothing

| otherwise = top_cards_image
where
no_of_cards = length pile
top_cards_image = pile_of_cards side (take 10 pile)

We choose to render the player names as a bold faced text on top
of a rectangle that is filled with the player’s card color. Instead of
scaling long or short names, we use masking to prevent long names
from running outside of the host image (Figure 1(i) shows the result
for a player named alice playing the red cards).

name_image :: Player -> Image m
name_image {name,color}
= overlay [(AtMiddleX,AtMiddleY)] []

[text {cardfont 16.0 & fontweight = "bold"} name
<@< {fill = if (color === Yellow) black white}

] host
<@< {mask = rect width height <@< {fill = white}

<@< {stroke = white}}
where

width = card_height *. 1.8
height = card_width *. 0.4
host = Just (rect width height <@< {fill = toSVGColor color})

With the above ingredients we are able to render a complete
Ligretto game state. The players are ‘sitting’ at a round table.
We arrange the elements as three concentric circular tiers. The
innermost tier contains the middle cards, the middle tier shows
the player names, and the outermost tier shows the player cards.
For this purpose we first create a general function that moves and
rotates an arbitrary list of images imgs along a circle segment of a
radians, and the circle having radius r:

circular :: Span Real [Image m] -> Image m
circular r a imgs
= overlay (repeat (AtMiddleX,AtMiddleY))

[(~r *. cos angle, ~r *. sin angle)
\\ i <- [0.0, sign_a ..]
, angle <- [i * alpha - 0.5 * pi]]

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j)

(k)

(l)

Figure 1. Compositional rendering of the Ligretto game state

[rotate (rad (i * alpha)) img
\\ i <- [0.0, sign_a ..]
& img <- imgs]
(Just (empty (r *. 2) (r *. 2)))

where
sign_a = toReal (sign a)
alpha = toRad (normalize (rad a)) / toReal (length imgs)

The circular image is created by stacking all images with their
centers (according to their span boxes) aligned. Each image gets
placed along the circle segment using the proper offset and gets
oriented along that circle segment by rotating the image with the
same angle.

The innermost tier, middle_image, simply distributes all middle
piles along a full circle:

middle_image :: Span Middle -> Image m
middle_image r middle
= circular r (2.0 * pi) (map (pile_image Front) middle)

Figure 1(j) shows the result of the initial middle for three players,
which consists of twelve empty piles, as each player has the poten-
tial to start four piles.

The middle tier, names_image, distributes all player names along
a full circle:

names_image :: Span [Player] -> Image m
names_image r players
= circular r (2.0 * pi) (map name_image players)

Before we construct the outermost tier of all players, we first
render the cards of a single player. These are either in a pile (the
hand and Ligretto piles), or are single cards (the row cards).

hand_images :: Hand -> [Image m]
hand_images {conceal, discard}
= [pile_image Back conceal, pile_image Front discard]

row_images :: RowPlayer -> Image m
row_images row = map (card_image Front) row

The player cards are placed along a circle segment that is slightly
less than a quarter of a circle (Figure 1(k)):

player_arc = 0.45 * pi

player_image :: Span Player -> Image m
player_image r {row,ligretto,hand}
= circular r player_arc (row_images row

++ [pile_image Front ligretto]
++ hand_images hand)

The outermost tier, players_image, distributes all player cards along
a full circle:

players_image :: Span [Player] -> Image GameSt
players_image r players
= rotate (rad angle)

(circular zero (2.0 * pi) (map (player_image r) players))
where
angle = player_arc / (toReal (2 * no)) - player_arc / 2.0
no = 3 + no_of_cards_in_row (length players)

Without the additional rotation, the first player’s cards are displayed
as shown in Figure 1(k). We prefer the layout of Figure 1(l) and
therefor rotate the entire image by half the player_arc, decreased
with half the angle required for one card.

Finally, the entire image overlays the three tiers (Figure 1(l)
gives the result of a typical initial Ligretto game state for three
players):

game_image :: GameSt -> Image m
game_image {players,middle}
= overlay (repeat (AtMiddleX,AtMiddleY)) []

([middle_image (card_height *. 2) middle
, names_image (card_height *. 3.2) players
, players_image (card_height *. 4) players
]) host

where
host = Just (empty (card_height *. 12) (card_height *. 12))

2.8 Discussion
When thinking of an image-under-construction, we map each in-
dividual layer to an image. What an image looks like, and how we
would like to use it in layout, are two distinct concepts that we have
separated by replacing bounding box with span box, and thinking of
images as if they are infinitely large. When thinking of the layout,
we first and foremost decide on the overall layout (e.g. collage or
grid, relying on span boxes), and pinpoint the exact location (align-
ment and offsets) later. Finally, when design choices are in a sense
arbitrary, we have adopted SVG’s design choices.

3. Compositional Interactive Images
In this section, we describe how to turn static images into interac-
tive ones by integrating them in iTasks. We start with a brief de-
scription of iTasks (Section 3.1). In iTasks, user-interaction is del-
egated to specialized tasks; the editor tasks. Hence, these are the
tasks that need to be enriched with images (Section 3.2). Finally, we
show how to turn the static Ligretto images interactive, and create
a complete TOP specification of a game of Ligretto (Section 3.3).

3.1 iTasks essentials
The TOP paradigm, as embodied in iTasks, builds on a few core
concepts: tasks, which define the work that needs to be done;
combinators, to compose tasks from simpler ones; editors, which
are tasks that facilitate user interaction; and shared data sources
(SDSs), to handle shared information in a uniform way.

Tasks are represented by the monad-like2 type (Task a), which
has an associated task value of type a. By inspecting the current task
value, other task (functions) can get informed about the state of the
task (in progress or finished). Tasks can be composed sequentially,
using the step combinator (>>*), or in parallel, using the parallel

combinator. Examples of their use are given when we continue with
the case study in Section 3.3.

Editors are a means to view data or to interact with it. They
are tasks that use type-driven generic programming to generate
a user interface for any first-order type. Examples of editors are
viewInformation, used to provide a read-only editor for a given type,
and updateInformation, which allows the user to modify a value. The
types of these editors are given here3:

:: ViewOption a = E.v: ViewWith (a -> v) & iTask v
:: UpdateOption a b = E.v: UpdateWith (a -> v)

(a -> v -> b) & iTask v

viewInformation :: Title [ViewOption m] m -> Task m | iTask m
updateInformation :: Title [UpdateOption m m] m -> Task m | iTask m

In both cases, the third parameter is the type of the initial value
that is displayed or updated. Instead of providing an initial value,
an editor can also be ‘connected’ to an SDS. In that case, the
current value of the SDS serves as source for rendering, and any
update coming from the editor is written to the SDS. In this way,
one can define a set of parallel communicating tasks. For every
above-mentioned editor, there is a share-enabled counterpart that
automatically reacts to changes in the SDS they are connected with:

2 We say monad-like, because the right-identity law does not hold for Task
3 E.v: introduces an existentially quantified type variable v, while & iTask
v places a type-class constraint for class iTask on v.

viewSharedInformation :: Title [ViewOption r]
(ReadWriteShared r w)

-> Task r | iTask r
updateSharedInformation :: Title [UpdateOption r w]

(ReadWriteShared r w)
-> Task w | iTask r & iTask w

Figure 2 shows the result of applying these editors to a value of
type Card (Section 2.7.1).

Figure 2. Generic Cardview- and updateInformation tasks.

Clearly, neither resulting interface is the one that is required
for the case study (Figure 1(d)). It should be noted that without
special support from iTasks, the View- and UpdateOption types are of
no help either: with these options the programmer can control the
domain of the values that are viewed or updated but not the generic
rendering. In the next section we show how to integrate the static
images into these editors.

3.2 Enhancing editors with images
We first integrate static images with editors by introducing a new
option for view(Shared)Information editors:

imageView :: (r -> *[*(ImageTag, *ImageTag)] -> Image r)
-> ViewOption r | iTask r

With (imageView render), the rendering function render is used to
visualize the model value of type r. Hence, with the sameCardvalue
that was used in Figure 2, the following editor:

viewInformation "A Ligretto card"
[ViewWith (imageView (\card _ -> card_image Front card))]
red_green_7_card_model

displays the card graphically, as in Figure 1(d).
Interactive images require more effort. First, we introduce a new

option for update(Shared)Information editors:

imageUpdate :: (r -> v) (v -> *[*(ImageTag,*ImageTag)] -> Image v)
(r -> v -> w)

-> UpdateOption r w | iTask v

With (imageUpdate f render g), a source value of type r is trans-
formed to a view model with function f , to which the render func-
tion is applied to create the image. Whenever the viewed value is
changed by an interaction, a destination value of type w is con-
structed out of the original source value and changed view value
with function g.

Second, we need to make the images themselves interactive. In
Section 2.3 we have omitted one image attribute:

:: OnClickAttr m = { onclick :: m -> m }

If img has type (Image m) then (img <@< {onclick = f}) is the same
image enhanced with mouse hit-detection. Whenever the user
clicks on a part of img, then the function f is applied to the current
model value that is associated with the image and computes a new
model value, updating the model value. In turn, this triggers the
functions on the update(Shared)Information editors to re-render the
model value, if necessary. For example, when a change is made to
a shared model value by applying some onclick function after an

interaction, all tasks looking at this shared value will automatically
be notified and updated such that they can show the new view cor-
responding with the new model value. Moreover, depending tasks
can inspect this new task value, not knowing whether it originated
from an interactive image or a generic interactive task. Composi-
tionality is preserved because the onclick function is unaware of
any final position, rotation, skewing, masking, or duplication of the
image with which it is associated.

3.3 Case study continued: interactive Ligretto
In this section we continue with the Ligretto case study in two steps:
we turn the static image of Section 2.7.2 into an interactive image
(Section 3.3.1) and then proceed with the final iTask specification
of the entire game (Section 3.3.2). In this section we assume the
presence of the following pure functions:

play_row_card :: Color Int GameSt -> GameSt
play_concealed_pile :: Color GameSt -> GameSt
play_hand_card :: Color GameSt -> GameSt

(play_row_card player no game) moves the card of player found at
row number no (counting from 1) to an available middle pile and, if
such a middle pile exists, moves the top card of the player’s ligretto
pile to the row. (play_concealed_pile player game) moves the top
three cards of the concealed pile to the discard pile of player, if
these exist, and shuffles the discard pile back to the concealed pile,
if not. Finally, (play_hand_card player game) moves the top card on
the discard pile to an available middle pile, if such a pile exists.
These functions are only concerned with the model types defined
in Section 2.7.1. They ensure that only legal moves can be made.

3.3.1 Interactive Ligretto images
The game_image function defined at the very end of Section 2.7.2
shows the entire state of the game as seen from the perspective
of the ‘first’ player. To show the game from the perspective of
any player, we need to rotate the image according to that player’s
position in the list of participants. This is the purpose of the
player_perspective function which is parameterized with the color
of the player. This color parameter is also used to make certain that
this player can only play her own cards.

player_perspective :: Color GameSt *[*(ImageTag, *ImageTag)]
-> Image GameSt

player_perspective color gameSt _
= rotate (rad (~(toReal my_no * angle)))

(game_image color gameSt)
where
angle = 2.0 * pi / (toReal (length gameSt.players))
my_no = hd [i \\ player <- gameSt.players

& i <- [0 ..] | player.color === color]

(Note that this function ignores the image tag source because they
are not required by any of the image rendering functions.)

The new game_image function merely passes the player color to
the outermost image tier that renders all playable and non-playable
cards. The other two image tiers remain static.

game_image :: Color GameSt -> Image GameSt
game_image color {players, middle}
= overlay (repeat (AtMiddleX,AtMiddleY)) []

([middle_image (card_height *. 2) middle
, names_image (card_height *. 3.2) players
, players_image (card_height *. 4) color players
]) host

where
host = Just (empty (card_height *. 12) (card_height *. 12))

The only change to the players_image function is that for each
player-rendering it is determined whether this rendering is going
to be interactive or not.

players_image :: Span Color [Player] -> Image GameSt
players_image r color players
= rotate (rad angle)

(circular zero (2.0 * pi)
[player_image r (player.color === color) player
\\ player <- players])

where
angle = player_arc / (toReal (2 * no)) - player_arc / 2.0
no = 3 + no_of_cards_in_row (length players)

Consequently, player_image has an additional Boolean parameter
that tells whether the image is interactive. The interactive elements
of a player are the row-cards and the hand-cards.

player_image :: Span Bool Player -> Image GameSt
player_image r interactive player
= circular r player_arc

(row_images interactive player.row
++ [pile_image Front player.ligretto]
++ hand_images interactive player.hand player.color)

Playing a row card is defined by the pure function play_row_card.
Only if the image is interactive is it added as an onclick attribute:

row_images :: Bool RowPlayer -> [Image GameSt]
row_images interactive row
= [tuneIf interactive (card_image Front row_card)

{onclick = play_row_card row_card.back no}
\\ row_card <- row & no <- [1 ..]]

Similarly, the two sub-piles of the hand cards behave as specified by
the pure functions play_concealed_pile and play_hand_card, but only
if the images are interactive:

hand_images :: Bool Hand Color -> [Image GameSt]
hand_images interactive {conceal,discard} color
= [tuneIf interactive (pile_image Back conceal)

{onclick = play_concealed_pile color}
, tuneIf interactive (pile_image Front discard)

{onclick = play_hand_card color}]

These extensions are sufficient to turn the static Ligretto rendering
into an interactive image that can be used by editor tasks. It should
be noted that the compositional style is not compromised by mak-
ing these images interactive: none of these functions are aware of
the ultimate position, angle or size in the fully rendered Ligretto
game. The next section shows how to integrate these editor tasks
into a complete distributed TOP application.

3.3.2 The Ligretto game
One of the Ligretto players takes the initiative and invites one
through three friends to join in. Each player is assigned one of the
Ligretto colors. In addition, we need to extract initial random values
for the shuffling activities by all players. Once this is done, we can
set up the shared game state and start to play:

play_Ligretto :: Task (Color, String)
play_Ligretto
= get currentUser
>>= \me -> invite_friends
>>= \them -> let us = zip2 (colors (1 + length them))

[me : them]
num_us = length us

in allTasks (repeatn num_us (get randomInt))
>>= \rs -> let gameSt = { middle = repeatn (4 * num_us) []

, players = [initial_player
num_us
c
(toString u)
(abs r)

\\ (c, u) <- us & r <- rs]}
in withShared gameSt (play_game us)

currentUser is an SDS that contains a User value describing which
user is currently performing the task. randomInt is another SDS that
holds random numbers. (withShared v t) creates an SDS with initial
value v, and passes it to t. The invite_friends task terminates only
with the correct number of friends.

invite_friends :: Task [User]
invite_friends
= enterSharedMultipleChoice

"Select friends to play with" [] users
>>= \you -> if (not (isMember (length you) [1 .. 3]))

(viewInformation "Oops" []
"number of friends must be 1, 2, or 3"

>>| invite_friends)
(return you)

users is an SDS that contains all known users of the system. A
selection of this list can be made with enter(Shared)MultipleChoice.

All players receive a new task to play a game of Ligretto:

play_game :: [(Color,User)] (Shared GameSt) -> Task (Color,String)
play_game users game_st
= anyTask [u @: play (c, toString u) game_st

\\ (c, u) <- users]

anyTask is a parallel task combinator that terminates as soon as one
of its sub-tasks terminates. Here, each sub-task, play, is assigned to
one of the players, using the task assignment combinator @:.

For each player, the game proceeds in two phases. In the first
phase, cards are played until one of the participants obtains an
empty ligretto pile. In the second phase, the winner receives her
accolades4.

play :: (Color,String) (Shared GameSt) -> Task (Color,String)
play (color,name) game_st
= updateSharedInformation name

[imageUpdate id (player_perspective color) (const st)]
game_st

>>* [OnValue (game_over color game_st)]
where

game_over me game_st (Value gameSt _)
= case and_the_winner_is gameSt of

Just {color, name}
= let won = (color, name)

in Just (accolades won me game_st >>| return won)
_ = Nothing

The play task is an editor enhanced with the player perspective
function that has been developed in Section 3.3.1. This task edits
an SDS because all players manipulate the same middle cards
and want to see the progress of their opponents at the same time.
Players play simultaneously, but only their own cards are click-
able and can be played in any order. The model functions presented
in Section 3.3 guarantee that only legal moves can be made. Race
conditions may occur, e.g. when two players want to play their card
on top of the same middle pile. This is automatically solved by
the shared system on a first-come-first-serve basis. The move of
the second player is ignored. The step combinator >>* continuously
checks the current value of the game state (that is manipulated by
all players in parallel) to determine whether one of the players has
obtained an empty ligretto pile, and if that is the case, proceeds with
the accolades task. This terminates the entire play task (and therefor
also the anyTask application in play_game).

Finally, to convince all other players that the winner has won
fair and square, not only her name is announced, but also the entire
game state. To disallow further editing of the game state, it is
merely rendered as a view.

4 This is a simplification of the rules of the game in which the remaining
points need to be calculated. For brevity we omit this.

accolades :: (Color, String) Color (Shared GameSt) -> Task GameSt
accolades won me game_st
= viewSharedInformation ("The winner is " <+++ won)

[imageView (player_perspective me)] game_st

3.4 Discussion
Due to the expressive power of the iTasks editors and combina-
tors, the definition of an interactive graphical oriented game such
as Ligretto can be given in a concise declarative style. Static im-
ages can be turned into interactive ones by adding pure functions
to (sub)images. No complicated mouse detections algorithms are
needed to find out what has been clicked, it does not matter how
the (sub)images are being transformed or used. It is clear that being
compositional is a desirable property for an image library. How-
ever, it is commonly not so easy to realize this. The implementer
needs strong support from the underlying graphical library.

4. Implementation
In this section, we explain how images are incorporated in iTasks’
architecture (Section 4.1). We give an introduction to SVG and
briefly evaluate its strengths and weaknesses (Section 4.2). Finally,
we discuss how we generate SVG from images (Section 4.3).

4.1 Customizable interactive tasks
iTasks has a client-server architecture. Commonly, interactive tasks
run as client in the browser while the coordination and communica-
tion between the tasks is handled by the server. Type driven generic
functions are used with which form based editors can be generated
for any first order type. As we have seen in Section 3.1, one can
also specialize such an editor for a specific concrete type. One can
even define rich client tasks, by using editlets [10], which can be
thought of as an embedded client-side JavaScript application.

An editlet consists of two parts: one part of the editlet runs on
the server (in native code) while the other part runs on the client
(just-in-time compiled to JavaScript). Each part maintains its own
state. A diff-based synchronization mechanism keeps the two states
synchronized. Whenever the client receives a new diff, it has the
ability to execute arbitrary JavaScript code. Editlet programmers
do not write JavaScript code directly, but use a foreign function
interface and a sophisticated cross-compilation mechanism from
Clean to JavaScript [9]. This mechanism allows us to execute any
Clean function in the browser. As a consequence, it is possible to
write almost all code in one single language. We can decide at run-
time which tasks and functions to execute on the server, and which
to execute on the client.

In order to integrate interactive images in iTasks, we have cre-
ated an SVG editlet which synchronizes an image’s model value on
the server with the client, after which the client renders the image
and enables it to respond to on-click events.

4.2 SVG: Introduction, strengths, and weaknesses
SVG is a plain-text, XML-based markup language that describes
vector graphics. It has been explicitly designed to work well with
existing browser technologies, such as JavaScript, CSS, and the
DOM. At the moment of writing this paper, SVG 1.1 Second Edi-
tion is the most recent published version of the specification. This
version is largely supported by all modern mainstream browsers.

SVG has facilities for drawing both arbitrary shapes and text.
For the former, it features one primitive shape: the path. A path is a
sequence of individual path segments, which can either be straight
or curved. All other shapes can be defined in terms of a path,
although that would be cumbersome in practice. For that reason,
SVG defines several basic shapes: rectangle, circle, ellipse, line,
polygon, and polyline. Each of these basic shapes is represented

by an SVG XML element. A shape’s dimensions are specified with
attributes on the shape element itself.

SVG also has facilities to render text, which is different from
path-based shapes in that text is a sequence of font glyphs, specified
in plain-text, rather than a sequence of paths. Font properties, such
as the font family and font weight, are specified textually as SVG
attributes on the text element. As a consequence of the way SVG
implements text, one cannot determine the exact width of a piece
of text until it is inserted into the browser’s DOM and is rendered,
even if all font properties have been specified. This is due to the fact
that rendering text relies on the font definition being available on
the client. If the client does not have the specified font, it chooses a
fall-back font. The fall-back font may have different glyph-widths
than the specified font, resulting in a different text-width. This
makes images containing text harder to render with predictable
results.

A collection of shapes can be grouped using the group element
<g />. These shapes can then collectively be identified, transformed,
interacted with, or attributed with certain properties.

All shapes can be styled by specifying properties on the indi-
vidual elements. All shapes, except path, can be positioned relative
to the current coordinate system by specifying x and y properties.

Shapes can be transformed using a transformation matrix. For
convenience, however, SVG provides specific transformations:
translation, scaling, rotation and skewing.

SVG is largely compositional by itself. Individual shapes can
be drawn and positioned independently from others. However, this
compositionality is lost when rotation transformations are applied;
when rotating an image, its axes rotate along with it. Any sub-
sequent transformations, such as translations, then act relative to
these rotated axes. As a consequence, first rotating an image around
its center and then translating it yields a different result than first
translating the image and then rotating it around its center. Figure 3
shows the problem graphically.

A B

C

Figure 3. SVG rotation and translation in different orders

Square A is the original square. Square B is our desired result
and is what we get after first translating square A along the x-
axis and then rotating it 45 degrees around its center. However,
when we first perform the rotation and then the translation, we end
up with square C. We compensate for this behavior by wrapping
an image in a group element immediately after it is rotated. Any
subsequent transformations are then applied to the group, rather
than the original shape. This effectively resets the image’s axes,
allowing us to obtain result B, regardless of the order in which the
transformations have been applied.

Transformations also pose specific challenges for text, because
rotation and translation are always performed relative to an image’s
origin. In all other SVG elements, the origin is situated in the
element’s top-left corner. For text elements, however, the origin is
situated on the left of the text’s baseline, as is illustrated in Figure 4.

As a consequence of the different origin, we need to compensate
when translating or rotating a piece of text. To do so accurately,
we require at least the font’s ascent and descent heights. However,
the current SVG specification does not provide an API to obtain
these metrics. A common workaround to this problem is to count
pixels of a text glyph on a raster-based canvas. We choose a simpler

descent height

x-height

ascent height

baseline
origin phx

Figure 4. A text’s origin and ascent, descent, and x-heights.

approximation: we assume that the ascent and descent heights are
75% and 25% of the text height, respectively. While this heuristic
has worked reasonably well in practice so far, it is far from a general
solution.

4.3 Generating SVG
Since a text’s width cannot be known until it is inserted into the
DOM, we are forced to interact with the browser during SVG
generation. Because of this, we choose to execute all parts of the
rendering process on the client. We have created an SVG editlet
which synchronizes the model value between the server and client,
turns that model value into an image on the client, then calculates
the text widths, and finally renders that image as SVG. This process
is illustrated in Figure 5.

Model Image ImageMeasure text

Compute spans

SVG

Figure 5. The SVG generation pipeline

Even with known text-widths, images can still contain lookup-
spans which we need to resolve and reduce to pixel values, before
we can generate SVG. Several iterations may be needed until we
arrive at a fix-point and have resolved all lookup-spans. In the worst
case, this process can diverge. When we have converged on a fix-
point, SVG is generated and inserted in the DOM.

Generating SVG code is simplified by desugaring the internal
image structure. All grids and overlays are desugared to collages,
as shown in Figure 6. We then only have to concern ourselves with
rendering SVG for collages. Figure 6 omits the implementation de-
tails of basic images, since they have a one-to-one correspondence
to basic SVG shapes.

To translate overlays to collages, we first calculate the spans of
all sub-images, after which we determine the spans for the largest
image in the overlay, or the span of the host image, if present.
We then calculate the offsets required to align all images relative
to these spans, and add them to the offsets manually provided by
the image programmer. These offsets are then used to express the
overlay as collage. Translating a grid to a collage is a bit more
involved. First, we obtain a list of lists of the spans of the individual
images in the grid layout. Each list in the outer list represents one
row, while each index in the inner lists represents one column.
To calculate the offsets of each cell, we first obtain the x- and y-
spans of each row and column. These spans are determined by the
widest and highest cell in each row and column. Each cell’s offset
is calculated by adding the dimensions of previous cells together,
keeping into account the alignment and manual offsets that each
cell has. We end up with a list of lists of offsets, which we then
flatten to obtain the list of offsets required to form a collage.

getXAlign _ _ AtLeft = zero
getXAlign maxX xspan AtMiddleX = (maxX /. 2.0) - (xspan /. 2.0)
getXAlign maxX xspan AtRight = maxX - xspan

getYAlign _ _ AtTop = zero
getYAlign maxY yspan AtMiddleY = (maxY /. 2.0) - (yspan /. 2.0)
getYAlign maxY yspan AtBottom = maxY - yspan

toSVG (BasicImage ..) = .. / / Omitted for brevity
toSVG (Overlay aligns offsets images host) =

let allSpans = getAllSpans images
(maxX, maxY) = getMaxSpans allSpans host
alignOffsets = [(getXAlign maxX xspan align

, getYAlign maxY yspan align)
\\ (xspan, yspan) <- allSpans
& align <- aligns]

positionOffsets = [(alignX + offsetX, alignY + offsetY)
\\ (alignX, alignY) <- alignOffsets
& (offsetX, offsetY) <- offsets]

in toSVG (Collage positionOffsets images host)
toSVG (Grid offsetss alignss imagess host) =

let spanss = getAllGridSpans imagess
offsets = calculateGridOffsets (getColumnXSpans spanss)

(getRowYSpans spanss) alignss imagess offsetss
calculateGridOffsets cellXSpans cellYSpans
alignss imagess offsetss =
fst (foldr (mkRows cellXSpans) ([], zero)

(zip4 alignss imagess cellYSpans offsetss))
mkRows cellXSpans (aligns, images, cellYSpan, offsets)
(allOffsets, accYOff) =
let cols = fst (foldr (mkCols cellYSpan accYOff) ([], zero)

(zip4 aligns images cellXSpans offsets))
in ([cols : allOffsets], accYOff + cellYSpan)

mkCols cellYSpan accYOff (align, image, cellXSpan,
(manualXOff, manualYOff)) (allOffsets, accXOff) =
let (imageXSpan

, imageYSpan) = getImageSpans image
alignXOff = getXAlign cellXSpan imageXSpan align
alignYOff = getYAlign cellYSpan imageYSpan align
offsetPair = (alignXOff + accXOff + manualXOff

, alignYOff + accYOff + manualYOff)
in ([offsetPair : allOffsets], accXOff + cellXSpan)

in toSVG (Collage (flatten offsets) (flatten imagess) host)
toSVG (Collage offsets images (Just host)) =
svgGroup []
[toSVG host
, toSVG (Collage offsets images Nothing)]

toSVG (Collage offsets images Nothing) =
svgGroup []
(zipWith (\off img -> svgGroup [translateAttr off] (toSVG img))

offsets images)

Figure 6. Outline of the SVG conversion algorithm.

4.4 Discussion
Choosing SVG as rendering mechanism has the advantage that
images are inherently scalable and are viewable in any modern
browser. However, it also poses new problems.

The plain-text nature of SVG introduces problems with render-
ing fonts, because not all font metrics required for positioning text
are available in the SVG API. Future SVG standards will likely
address these problems. Additionally, we wish to add support for
embedded fonts. Currently, we cannot guarantee a particular font
is available on the client. With embedded fonts, we can. Both SVG
1.1 and CSS 3 support embedding fonts. An additional benefit is
that we can always calculate the width of text snippets server-side
if an embedded font is used, thereby eliminating the need to calcu-
late text widths on the client.

Another problem is due to the fact that we are currently com-
puting images completely on the client. This is significant slower
than doing so on the server, because JavaScript is an interpreted,
garbage-collected language, which has to work with limited heap
space. We frequently trigger JavaScript’s garbage collector while
evaluating Clean expressions. This is due to the fact that the rep-
resentation of our client-side runtime system heavily uses arrays,
which it frequently creates and destroys, creating garbage on the
JavaScript heap. In practice, these slowdowns make it infeasible
to play a game of Ligretto on slower machines, because the com-
putational lag can be as much as one full second. We reduce this
problem by firstly reducing the size of the span-expressions as
much as possible during their construction. This is not always pos-
sible, however, due to the presence of lookup-spans. Secondly, we
make the client-side computations as strict as possible, eliminating
unnecessary thunk evaluation. Still, these are only optimizations,
rather than actual solutions. We want to pursue three solutions to
this problem. Firstly, we want to generate all SVG on the server,
so that we only need to send a string of SVG to the client. This
requires first calculating all text widths on the client, requiring us
to implement a rendering protocol. Currently, however, the edit-
let infrastructure does not allow for implementing protocols, so the
infrastructure will need to be extended. Secondly, we want to com-
pletely eliminate the standard JavaScript garbage collector from the
editlet runtime and replace it with our own. This approach is advo-
cated by the asm.js [1] initiative, which is a highly optimizable sub-
set of JavaScript. Pursuing this solution, we also want to generate
low-level, asm.js-style JavaScript instead of the high-level, human-
readable JavaScript we are currently generating. Thirdly, we want
to do partial updates to the images, so that only the parts that have
changed need to be recalculated and redrawn.

5. Related work
Peter Henderson’s Functional Geometry (FG) is a seminal ap-
proach to purely compositional images [16]. Henderson states [17]
that the design principle “. . . was based on contemporary views of
what was good practice in declarative systems”. Similar to FG, we
always specify the layout of sub-images relative to each other. Un-
like FG, we do not abstract from ‘size’ (or rather, span boxes, in
our terminology, because we regard images to be infinitely large).
For instance, in FG, the span boxes of beside(p,p) and p are equal.
In Graphics.Scalable (and most other approaches), the span box of
(beside [] [] [p,p] Nothing) has twice the width of the span box of
p. In FG, overlaying images consists of taking the union of graphic
elements ([17] Section 5) which is a sensible choice because the
primitive elements are (curved) lines only. Any approach that sup-
ports (partially) filled shapes must make the order of rendering of
graphic elements explicit, either via ordering the graphics opera-
tions (typically on a canvas-model) or via a stacking concept. We
have chosen the latter route and separate stacking images (z-axis)
from specifying their relative layout (x- and y-axes). This idea can
be traced back, although in a very different way, to Haggis [14, 15],
in which piles of widgets (i.e. common user-interface elements,
such as text fields) are created monadically and put in containers
separately to control their layout along the x- and y-axes. At the
risk of diverging, it should be mentioned here that this solution has
been adopted in other GUI approaches, viz. Object IO [4], TkGofer
[6], and wxHaskell [19]. More recently, the Diagrams approach by
Brent Yorgey [24], very explicitly deals with stacking using lists
and monoids as organizational principle of structuring the library.
Diagrams features an elegant way of placing images besides each
other using their outlines instead of bounding boxes. However, Di-
agrams is restricted to non-interactive images only, and the other
approaches do not offer the usual graphical transformations such as
rotation, scaling, and skewing on widget-like components. One of

the advantages of using SVG as graphics back-end is that it extends
to both graphics and widgets. Arbitrary HTML can be embedded
in SVG document using the <foreignObject> element, after which it
can be arbitrarily transformed like all other SVG elements.

The layout combinators of Graphics.Scalable were inspired by
the Racket image API [2, 13], which has a mature, but rather
baroque, API for the compositional specification of images. For
instance, for the specification of layout, it features 22 functions. In
contrast, Graphics.Scalable has 1 core layout function, collage, and
5 derived combinators (Section 2.4). These are sufficient to model
all Racket image layout combinators, and more, as the Racket API
does not support the grid-combinator. In addition, we profit from
the orthogonality of the SVG back-end in that we can support flip-
ping transformations, which is restricted to images without text in
Racket. The Racket image API is bitmap-oriented and offers fea-
tures such as manipulating bitmaps directly, extracting color-lists
and bitmaps from images, ‘freezing’ images, and defining a prag-
matic equality relation that is based on the current bitmap pixels.
Except for the ability to embed bitmaps in SVG, the other fea-
tures do not match naturally with the vector graphics philosophy.
Both Racket and SVG offer elements that have not yet been trans-
ferred to Graphics.Scalable (both: Bézier curves; Racket: pinholes;
SVG: paths, gradients, and filtering). We conjecture that they can be
added to Graphics.Scalablewithout compromising its design princi-
ples.

An entirely different view on images is taken by Conal Elliot
et al in their work on Pan [11], enhancing it with interaction, re-
sulting in Fran [12] which gave birth to the paradigm of functional
reactive programming (FRP) and, amongst others, Yampa [7, 18].
Characteristic to these approaches is to consider images as func-
tions from coordinates to a well-defined range (Pan and Fran), an-
imations as functions from continuous time to images, and inter-
active applications as functions from discrete events to animations
(Yampa). A recurring theme in their work is that specifications are
functions from a continuous domain to a discrete domain. The im-
plementation ‘samples’ these functions. This differs greatly from
our approach that advocates a ‘structurally-analytic’ view on im-
age specifications and embedding in TOP to define behavior.

Another different path has been taken by Magnus Carlsson and
Thomas Hallgren in their work on the Fudgets system [5]. Just
like FRP and TOP, it features combinators to structure the top-level
behavior of the interactive application. The basic elements are the
fudgets which conceptually behave as typed value-transformers at
their API-side, abstracting from the concrete way they work. This
is also the key difference with iTasks and TOP that features task
abstraction that processes a value. Images can be programmed in
Fudgets using an approach that is similar to the Pictures abstraction
that is used in the above mentioned Haggis system [15].

6. Conclusions and future work
We have presented an image library and have integrated it with
iTasks to allow the creation of distributed, multi-user, web applica-
tions with custom-built interactive, graphical user interfaces. The
image libary is implemented on top of SVG, produces interactive
scalable vector graphics, and can be used in any modern browser.
An important property of the image library is that it is purely com-
positional, both for static and interactive images.

The Ligretto case study demonstrates how graphically based
multi-user tasks can be defined in a concise way, offering a good
separation of concerns to the programmer. This involves three sepa-
rate stages: first, one concentrates on modeling the game’s domain,
using pure data structures and pure functions; second, one defines
the graphic visualization as functions from this domain to image
values; third, one defines the application behavior as an iTask and
integrates visualization within editors. We have observed this same

pattern of working in an earlier experiment [3] that, at that time,
did not have the refined SVG support as Graphics.Scalable. We are
going to investigate the generality of this application design pattern.

The current implementation suffers from severe performance
issues of the generated client-side JavaScript code. We want to
address this problem by generating asm.js-style code, replacing the
garbage collection by our own, and moving calculations from client
to server where possible. Early experiments that perform a round-
trip to the client to measure text widths, but render the SVG on the
server show promise of greatly improved performance.

Our event model is currently limited: interaction is restricted
to the single model type of the entire image, and the event model
is restricted to on-click events only. We want to investigate how
to define and combine interactions on sub-images. We need ad-
ditional ways of interacting with images such as drag-and-drop,
double-click, and right-click, but also keyboard input. We want to
explore more complex forms of interaction, such as touch ges-
tures. The challenge in incorporating these interactions is that they
must not compromise the way of working and thinking of the
Graphics.Scalable library.

As mentioned in the introduction, we are using the library to
draw Tonic diagrams. In these diagrams, individual nodes are con-
nected with edges. Tonic’s diagrams are simple enough that we can
compute these edges in a straight-forward manner. However, this is
not the case in general. Therefore, we want to introduce the con-
cepts of connector points (which can be attached to an image), and
include automatic edge routing between these connector points.

Acknowledgments
This research is partly funded by TNO’s PhD fund and the Neder-
landse Defensie Academie (NLDA). The authors thank the review-
ers for their constructive feedback.

References
[1] asm.js, Aug. 2014. URL http://asmjs.org/spec/latest/.

[2] image.rkt, Dec 2014. URL http://docs.racket-lang.org/
teachpack/2htdpimage.html.

[3] P. Achten. Why functional programming matters to me. In P. Achten
and P. Koopman, editors, The Beauty of Functional Code - Essays
Dedicated to Rinus Plasmeijer on the Occasion of His 61st Birthday,
Festschrift, number 8106 in LNAI, pages 79–96. Springer, August
2013. ISBN ISBN 978-3-642-40354-5.

[4] P. Achten and R. Plasmeijer. The ins and outs of Concurrent Clean
I/O. Journal of Functional Programming, 5(1):81–110, 1995.

[5] M. Carlsson and T. Hallgren. Fudgets - a graphical user interface in
a lazy functional language. In Proceedings of the 6th International
Conference on Functional Programming Languages and Computer
Architecture, FPCA ’93, Kopenhagen, Denmark, 1993.

[6] K. Claessen, T. Vullinghs, and E. Meijer. Structuring graphical
paradigms in TkGofer. In Proceedings of the 2nd International Con-
ference on Functional Programming, ICFP ’97, volume 32(8), pages
251–262, Amsterdam, The Netherlands, 9-11, June 1997. ACM Press.

[7] A. Courtney and C. Elliott. Genuinely functional user interfaces. In
Proceedings of the 5th Haskell Workshop, Haskell ’01, Sept. 2001.

[8] E. Dahlström, P. Dengler, A. Grasso, C. Lilley, C. McCormack,
D. Schepers, and J. Watt. Scalable vector graphics (svg) 1.1 (second
edition). Technical Report REC-SVG11-20110816, W3C Recommen-
dation 16 August 2011, 2011.

[9] L. Domoszlai, E. Bruël, and J. Jansen. Implementing a non-strict
purely functional language in JavaScript. Acta Universitatis Sapi-
entiae, 3:76–98, 2011. URL http://www.acta.sapientia.ro/
acta-info/C3-1/info31-4.pdf.

[10] L. Domoszlai, B. Lijnse, and R. Plasmeijer. Editlets: type based client
side editors for iTasks. In S. Tobin-Hochstadt, editor, Proceedings

26th International Workshop on the Implementation of Functional
Languages, IFL ’14, Boston, U.S.A., Oct 1–3 2014. Under submission.

[11] C. Elliot. Functional images. In J. Gibbons and O. de Moor, editors,
The fun of programming, pages 131–150. Palgrave Macmillan, 2003.
ISBN 0-333-99285-7.

[12] C. Elliot and P. Hudak. Functional Reactive Animation. In Proceed-
ings International Conference on Functional Programming, ICFP ’97,
pages 263–273, Amsterdam, Netherlands, 1997.

[13] M. Felleisen, R. Findler, M. Flatt, and S. Krishnamurthi. A Functional
I/O System * or, Fun for Freshman Kids. In Proceedings Interna-
tional Conference on Functional Programming, ICFP ’09, Edinburgh,
Scotland, UK, 2009. ACM Press.

[14] S. Finne and S. Peyton Jones. Composing Haggis. In Eurographics
Workshop on Programming Paradigms in Graphics, pages 85–101,
Maastricht, the Netherlands, 1995. Springer.

[15] S. Finne and S. Peyton Jones. Pictures: A Simple Structured Graph-
ics Model. In D. Turner, editor, Proceedings of the 1995 Glasgow
Workshop on Functional Programming, Ullapool, Scotland, July 10-
12 1995. Electronic Workshops in Computing.

[16] P. Henderson. Functional geometry. In D. Friedman and D. Wise,
editors, Conference Record of the 1982 ACM Symposium on Lisp and
Functional Programming, pages 179–187, Pittsburgh, Pennsylvania,
1982. ACM Press. URL http://www.ecs.soton.ac.uk/~ph/
funcgeo.pdf.

[17] P. Henderson. Functional geometry. Higher-Order and Symbolic
Computation, 15:349–365, 2002.

[18] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots,
and functional reactive programming. In J. Jeuring and S. Peyton
Jones, editors, Proceedings of the 4th International Summer School
on Advanced Functional Programming, AFP ’03, volume 2638 of
Lecture Notes in Computer Science , pages 159–187. Oxford, UK,
Springer-Verlag, 2003.

[19] D. Leijen. wxHaskell: a portable and concise GUI library for Haskell.
In Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,
pages 57–68, Snowbird, Utah, USA, 2004. ACM. . URL http:
//doi.acm.org/10.1145/1017472.1017483.

[20] B. Lijnse. TOP to the Rescue – Task-Oriented Programming for In-
cident Response Applications. PhD thesis, Institute for Computing
and Information Sciences, Radboud University Nijmegen, The Nether-
lands , 2013. ISBN 978-90-820259-0-3.

[21] R. Plasmeijer and M. van Eekelen. Clean language report (version
2.1). http://clean.cs.ru.nl, 2002.

[22] R. Plasmeijer, B. Lijnse, S. Michels, P. Achten, and P. Koopman. Task-
Oriented Programming in a Pure Functional Language. In Proceedings
of the 2012 ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’12, pages 195–206,
Leuven, Belgium, Sept. 2012. ACM. ISBN 978-1-4503-1522-7.

[23] J. Stutterheim, R. Plasmeijer, and P. Achten. Tonic: An Infrastructure
to Graphically Represent the Definition and Behaviour of Tasks. In
J. Hage and J. McCarthy, editors, Trends in Functional Programming,
volume 8843 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2014.

[24] B. Yorgey. Monoids: Theme and variations (functional pearl). In Pro-
ceedings of The Haskell Symposium, Copenhagen, Denmark, Septem-
ber 13 2012. ACM.

http://asmjs.org/spec/latest/
http://docs.racket-lang.org/teachpack/2htdpimage.html
http://docs.racket-lang.org/teachpack/2htdpimage.html
http://www.acta.sapientia.ro/acta-info/C3-1/info31-4.pdf
http://www.acta.sapientia.ro/acta-info/C3-1/info31-4.pdf
http://www.ecs.soton.ac.uk/~ph/funcgeo.pdf
http://www.ecs.soton.ac.uk/~ph/funcgeo.pdf
http://doi.acm.org/10.1145/1017472.1017483
http://doi.acm.org/10.1145/1017472.1017483
http://clean.cs.ru.nl

	Introduction
	Compositional Static Images
	Image concepts
	Basic images
	Image attributes
	Image composition
	Symbolic span expressions
	Image transformations
	Case study: rendering the Ligretto state
	Ligretto model types
	Ligretto rendering

	Discussion

	Compositional Interactive Images
	iTasks essentials
	Enhancing editors with images
	Case study continued: interactive Ligretto
	Interactive Ligretto images
	The Ligretto game

	Discussion

	Implementation
	Customizable interactive tasks
	SVG: Introduction, strengths, and weaknesses
	Generating SVG
	Discussion

	Related work
	Conclusions and future work

