
Tasklets: Client-side evaluation for iTask3

László Domoszlai1 and Rinus Plasmeijer2

1 Department of Programming Languages and Compilers, Eötvös Loránd University
Budapest, Hungary

2 Software Technology Department, Radboud University
Nijmegen, The Netherlands

dlacko@pnyf.inf.elte.hu, rinus@cs.ru.nl

Abstract. iTask3 [14] is the most recent incarnation of the iTask frame-
work for the construction of distributed systems where users work to-
gether on the internet. It offers a domain specific language for defining
applications, embedded into the lazy functional language Clean. From
the mere declarative specification a complete multi-user web application
is generated. Although the generated nature of the user interface (UI) en-
tails a number of benefits for the programmer, it suffers from the lack of
possibility to create custom UI building blocks. In this paper, we present
an extension to the iTask3 framework which introduces the concept of
tasklets for the development of custom, interactive web components in
a single language manner. We further show that the presented tasklet
architecture can be generalized in such a way that arbitrary parts of an
iTask application can be executed on the client.

1 Introduction

The iTask framework was originally developed as a dedicated web-based Work-
flow Management System (WFMS). Its most recent incarnation, iTask3, how-
ever, extends its boundaries beyond classical WFMS and offers a novel program-
ming paradigm for the construction of distributed systems where users work
together on the internet.

According to the iTask paradigm, the unit of application logic is a task. Tasks
are abstract descriptions of interactive persistent units of work that have a typed
value. When a task is executed, it has an opaque persistent value, which can be
observed by other tasks in a controlled way. In iTask, complex multi-user inter-
actions can be programmed in a declarative style just by defining the tasks that
have to be accomplished. The specification of the tasks is given by a domain
specific language embedded in the pure, lazy functional language Clean. Fur-
thermore, the specification is given on a very high level of abstraction and does
not require the programmer to provide any user interface definition. Merely by
defining the workflow of user interaction, a complete multi-user web application
is generated, all the details e.g. the generation of web user interface, client-server
communication, state management etc. are automatically taken care of by the
framework itself.

Developing web applications such a way is straightforward in the sense that
the programmers are liberated from these cumbersome and error-prone jobs,
such that they can concentrate on the essence of the application. The iTask
system makes it very easy to develop interactive multi-user applications. The
down side is that one has only limited control over the customization of the
generated user interface, but for this type of applications, this is often acceptable.
However, the experiment with real world applications, e.g. the implementation
of the Netherlands Coast Guard’s Search and Rescue (SAR) protocol [10, 11],
indicated that even if the functional web design is satisfactory, custom building
blocks may be required for the purpose of user-friendliness. A good example is
the aforementioned SAR workflow, where Google MAPS widgets complemented
the otherwise functional web application to visualize the locations of incidents.

To overcome this shortcoming, in this paper we present an extension for
the iTask3 system which enables the development of such widgets, the so called
tasklets. Tasklets are seamlessly integrated into iTask to preserve the elegance
of functional specification by hiding the behavior behind the interface of a task.
Tasklets are developed in a single-language, declarative manner and in accor-
dance with the model-view-controller user interface design (MVC) [9]. MVC de-
couples the application logic (the controller), the application data (the model)
and the presentation data (the view) to increase flexibility and reuse. Techni-
cally speaking, tasklets are embedded applications which behavior is encoded
in Clean written event handler functions. The event handlers are executed in
the browser, where, they have unrestricted access to client-side resources. Using
browser resources the tasklet can create custom appearance and exploit func-
tionality available only in the browser (e.g. HTML5 GeoLocation API), utilizing
the event-driven architecture the tasklet can achieve interactive behavior. With
this extension, iTask gains similar characteristics to multi-tier programming lan-
guages like Links [4] or Hop [15, 16], in the sense that the same language is used
to specify code residing on multiple locations or tiers, such as the client and the
server.

We further show that the presented tasklet facility can be used to improve
the responsiveness of an iTask application by enabling the execution of ordinary
tasks (virtually any part of an iTask application) in the browser instead of the
server. This, amongst other things, helps with avoiding the latency of communi-
cation, thus providing smoother user experience. Executing an iTask task in the
browser demands much more than executing an ordinary function. Tasks have
complex, interactive behavior and e.g. observable intermediate values which re-
quires communication with other tasks; therefore the execution must obey a
certain evaluation strategy. We will obtain general client-side execution support
by encoding this evaluation strategy in a tasklet.

In this paper we make the following contributions:

– The iTask framework is extended to enable the development of client-side,
interactive UI components in a single-language, declarative manner. These
components can be used to increase the expressiveness of the functional
iTask applications, and to provide functionality which is available only in

the browser. This facility, called tasklet, is designed in such a way to fit as
seamlessly as possible into the iTask formalism, that is to be opaque for
the developer of the functional specification and to retain the advantageous
generated nature of user interfaces of iTask applications as much as possible;

– Tasklets foster the model-view-controller user interface design to separate
the application logic, the application data and the presentation data. The
separation of these roles helps with increasing code flexibility, reuse and
maintainability;

– We further show that the tasklet architecture is versatile enough to pave the
way for the evaluation of almost all tasks at the client-side. Executing tasks
in the browser helps with avoiding client-server communication to reduce
server load and provide smoother user experience. This feature also creates
the preconditions for running iTask applications offline in a browser which
is a desired direction of future development;

– Finally, tasklets utilize a special compilation technique to enable the execu-
tion of arbitrary expression of an iTask application in the browser without
shipping of unnecessary code. This technique is based on run-time deserial-
ization of Clean expressions and involves on the fly compilation to JavaScript.
By minimizing the amount of client code, this approach has the definite ad-
vantages of reducing communication cost and memory usage in the browser.
Moreover it makes it possible to dynamically tune the set of tasks executed
in the browser by the current server load or other run-time information.

The remainder of this paper is organized as follows: in Section 2 we start
with a short overview of the iTask framework and develop a non-trivial, but
necessarily simplified example of a flight check-in application to give a taste of
iTask. In Section 3 we introduce the tasklet architecture and demonstrate its
usage by developing a tasklet to enrich the example of the previous section.
Some real-world use cases studies are discussed in Section 4. In Section 5 we
briefly discuss the design of the tasklet architecture, then we generalize it in
Section 6 to enable the execution of legacy tasks; some common restrictions on
its applicability is also given in this section. After a discussion of related work
in Section 7, we conclude in Section 8.

The iTask framework has been created in Clean. A concise overview of the
syntactical differences with Haskell is in [2]. We assume the reader is familiar
with the concept of generic programming and uniqueness typing.

2 Introduction to iTask

The most recent incarnation of the iTask system, iTask3, is a prototype frame-
work for programming workflow support applications in Clean using a new pro-
gramming paradigm built around the concept of a task. iTask uses a combinator-
based embedded domain specific language (EDSL) to specify compositions of
interdependent tasks. From these specifications, complete multi-user web appli-
cations are generated.

:: Task a // Task is an opaque, parameterized type constructor

// Exception handling:
throw :: e → Task a | iTask a & iTask, toString e

catchAll :: (Task a) (String → Task a) → Task a | iTask a

// Sequential composition:
(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask a & iTask b

(>>|) infixl 1 :: (Task a) (Task b) → Task b | iTask a & iTask b

return :: a → Task a | iTask a

// Parallel composition:
(||-) infixr 3 :: (Task a) (Task b) → Task b | iTask a & iTask b

// User interaction:
viewInformation :: String m → Task m | iTask m

enterInformation :: String → Task m | iTask m

enterChoice :: String (c o) → Task o | OptionContainer c & iTask o

Fig. 1. Combinators and primitive tasks used in the paper

Tasks are abstract descriptions of interactive persistent units of work that are
represented by the opaque type Task a, where a denotes the type of the value
that will be, eventually, delivered by the task when it is executed. Tasks can be
combined sequentially. The infix functions return and >>= are standard monadic
combinators. Task f >>= s, first performs task f, then the value produced by f

can be used by task s to compute any new task expression. The combinator >>|
works similarly, but it drops the value of the first task during composition. Task
return v produces value v without any effect. Tasks also can be performed in
parallel. In this paper only the rather special ||- combinator is used; it groups
two tasks in parallel and return the result of the right task.

The primitive task enterInformation is a generic editor, a type-driven task
which generates a web form for the arbitrary (first-order) type m and allows the
user to enter and edit a value of that type. Similarly, enterChoice allows the user
to choose from a set of values of type o. The selectable values must be disposed in
a container, the type of which is an instance of the type class OptionContainer.
Predefined instances of the OptionContainer class are the list type and a simple
tree type to enable hierarchical selection. Finally, viewInformation is used to
display a given value of the type m. The first argument of these functions is a
brief description of what the end-user is expected to do. Most type definitions
of the iTask combinators contain a closure at the end of their type signature,
e.g. | iTask m. This closure imposes a type restriction on the type variable m.
It means, that m can be arbitrary type, provided that some generic functions,
necessary for the iTask run-time system, must have instances for the given type.

A task can raise an exception in case it can no longer produce a meaningful
value. Any value can be thrown as exception by the throw function, provided
that it can be serialized as a string. Exceptions can be caught by catchAll the
first argument of which is a task that will possibly raise an exception, and its
second argument is a task to handle it.

In Figure 1, the small set of combinators and primitive tasks of the iTask DSL
is presented which are used throughout this paper (for reasons of presentation,
the types have been slightly simplified). The full language definition and its
semantics can be found in [14].

In the rest of this section, we demonstrate the expressive power of iTask
presenting an overly simplified, but still realistic example of a flight check-in
application. The application will operate on the following types:

:: Seat = Seat Int Int // Seat information: row, seat number in the row
:: Seats :== [Seat]

:: Booking = { bookingRef :: String // Unique booking reference number
, firstName :: String // Passenger’s first name
, lastName :: String, // Passenger’s last name
, flightNumber :: String, // Flight number
, pid :: Hidden String, // Unique number of passenger’s ID
, seat :: Maybe Seat // Seat information
}

:: Flight = { flightNumber :: String // Unique flight number
, free :: Seats // List of free seats
}

The Booking type describes a booking for a flight. It contains a unique reference
number, the flight number, and data of the passenger, including the unique
number of the ID document (pid). This latter is wrapped in the Hidden type to
indicate for the framework that it is not supposed to be displayed on any of the
screens. For the sake of brevity, the last field, seat, encodes seat information and
also indicates whether the passenger is checked-in. If a seat number is present,
the passenger is already checked-in, otherwise has not been yet. The Flight

record type describes a simplified view of flight data; in our case it contains only
the unique flight number and the list of vacant seats.

To concentrate on the essence of the application, the implementation of the
following functions, comprising the data tier, are omitted:

// Find flight and booking records by flight number and reference number accordingly
findFlight :: String → Task (Maybe Flight)
findBooking :: String → Task (Maybe Booking)
// Returns a list of booking records fulfilling a condition given by the first argument
listBookings :: (Booking → Bool) → Task [Booking]
// Update datasets and returns the up-to-date booking record
commitCheckIn :: Booking Seat → Task Booking

To keep the example as concise as possible, a very simple exception controlled
mechanism is used to handle errors; when an exception occurs the application

Fig. 2. The flight check-in screens

prints the error message and restarts the workflow. Therefore, the main task,
checkIn, is responsible for handling exceptions only. The task does not return
any meaningful value (Void), its semantics is based on side-effect:

checkIn :: Task Void

checkIn = catchAll workflow (λmsg → viewInformation "Error:" msg >>| checkIn)

Thanks to exceptions, the top level workflow can be straightforwardly decom-
posed to a sequence of tasks:

1workflow = enterInformation "Please enter booking information:"

2>>= λbi → lookUpBooking bi

3>>= λmbB → verifyBooking mbB

4>>= λb → findFlight b.Booking.flightNumber

5>>= λf → chooseSeat f

6>>= λseat → commitCheckIn b seat

7>>= viewInformation "Check-in succeeded:"

8>>| checkIn

First, the user is asked to provide booking information (line 1). The entered
information is used to look up the booking record (line 2), then the identity
of the user and other prerequisites are verified (line 3). After looking up the
related flight record in line 4, the user is asked to choose seat (line 5). Finally,
the check-in is committed to the database and the updated booking record is
displayed (line 6-7). In the last line, the workflow is restarted to continue with
a new check-in procedure.

The generic enterInformation function in line 1, generates a user inter-
face for the BookingInfo type; this type is inferred by looking at the type of
lookUpBooking. According to this type, the passenger is asked to provide the
booking reference number or her last name:

:: BookingInfo = BookingReference String | PassangerLastName String

In lookUpBooking, if a reference number was provided, the booking record is
looked up. Otherwise the user is asked to choose (using enterChoice) one of

the booking records in which the passenger’s last name matches and contains no
seat information. The function returns Nothing if a booking record could not be
found:

lookUpBooking :: BookingInfo → Maybe Booking

lookUpBooking (BookingReference ref) = findBooking ref

lookUpBooking (PassangerLastName ln)
= listBookings (λb → b.lastName==ln && isNothing b.seat)
>>= λbs → case bs of

[] = return Nothing

fs = enterChoice "Please choose passenger:" fs >>= return o Just

In the next step, the found booking record is validated. If some simple conditions
hold, the passenger is kindly asked to prove her identity:

verifyBooking :: (Maybe Booking) → Booking

verifyBooking Nothing = throw "Passenger cannot be found"

verifyBooking (Just b) | isJust b.seat = throw "Passenger is already checked-in"

verifyBooking (Just b) = viewInformation "Passenger:" b

||-

enterInformation "Please enter you id number:"

>>= λid → if (fromHidden b.pid==id) (return b) (throw "Identification...")

The final missing piece, the chooseSeat function, lets the passenger choose a
seat using enterChoice by the list of free seats stored in the Flight record:

chooseSeat :: (Maybe Flight) → Seat

chooseSeat (Just f)
= enterChoice "Please choose seat:" (map toString (sort f.free))

>>= return o fromString

chooseSeat Nothing = throw "Flight information cannot be found"

Figure 2 shows the screenshots of the application. As it can be seen, the user
interfaces are automatically generated from the type of the tasks only. Never-
theless they commonly look fine and intuitive to use. The only exception in this
example is the fourth screen shown; choosing a seat from a list of seat numbers
is anything but user friendly. In the next section we develop a more intuitive UI
component, a tasklet, for choosing a seat by looking at the layout of the airplane.

3 Introduction to tasklets

Tasklets are designed for the development of interactive web components in a
single-language manner. With this extension iTask3 becomes a multi-tier pro-
gramming language since all the different tiers of the web application can be
programmed in the single language Clean.

However, despite the common basis, there are many important differences
to most multi-tier programming languages. First of all, tasklets are not for the
development of complete, customized applications. It is designed to develop in-
dependent components to be attached to the generated trunk of an iTask appli-
cation. As such, we decided not taking the usual lightweight, view-centric web

development approach but enforce the model-view-controller user interface de-
sign in tasklet development. We believe that the separation of roles suits better
the development of components and it is more consistent with the objectives of
iTask. This heavyweight approach also fits better for a lazy, purely functional
language like Clean, where the expression of side-effects needs special attention.

Tasklets are designed to be independent in the sense that no facility is pro-
vided to initiate communication with other server or client components. One
can argue that this imposes limitations, however in our experience, it suits well
typical tasklets and enjoy an important advantage: this way the communication
between the client and server components can be completely implicit. Any ar-
gument can be passed to a tasklet by enclosing it into a closure of the tasklet
and the result is automatically shipped to the server when it is needed. The
developer does not even have to be aware of programming different tiers. The
accessible resources are statically controlled by the unique type that appears in
the signature of the function.

Tasklets are defined by the means of the Tasklet st val record type. It has
two type parameters denoting the type of the internal state (the model) of the
tasklet (st) and the type of its result value (val):

:: Tasklet st val = { generatorFunc :: (*World → *(TaskletHTML st, st, *World))
, resultFunc :: (st → TaskValue val)
}

:: TaskValue a = NoValue | Value a Stability

:: Stability :== Bool

During initialization, generatorFunc is executed on the server to provide the
initial state and user interface of the tasklet. Its only argument, a value of the
unique type *World, allows access to the external environment. The current value
of the tasklet is calculated when necessary by resultFunc from its internal state.
The result type, TaskValue a, an iTasks system type, expresses that the result
of a task execution can be an actual value (Value) which is stable or unstable,
or can indicate no meaningful value (NoValue). For the explanation of value
stability, please refer to [14], in this paper we always use stable return values,
which basically tells the task engine that the computation of the actual task
is finished. The user interface (the view) and its behavior (the controller) are
defined by the TaskletHTML structure:

:: TaskletHTML st = { html :: HtmlDef

, eventHandlers :: [HtmlEvent st]
}

:: HtmlDef = ∃a: HtmlDef a & toHtml a

:: HtmlEvent st = HtmlEvent HtmlElementId EventType (EventHandlerFunc st)
:: EventType = OnClick | OnMouseOver | OnMouseOut | ...

:: EventHandlerFunc st :== (st JSValue *JSWorld → *(st, *JSWorld))

The actual user interface (html field) can be given by any data structure pro-
vided that it has an instance of the function class toHtml. In the following, we
will use an overly simplified ADT to create HTML definitions which suits well

our straightforward example, however may not satisfying for more complicated
ones. Core iTask already supports the generation of high-level web forms based
on the iData [12] toolkit. In this case full, low-level control over the definition
of HTML elements is needed. This can be done in an abstract, monadic way
like in Wash [19] or by an XML like domain specific language similar to that
of Hop. Furthermore, the MVC concept enables that the three components can
be developed separately, and specifically allowing the View to be developed by
non-programmers. For this reason, some template mechanism also could be con-
sidered to be added similar to e.g. Yesod [17] or Snap [3]. However, providing
any particular tool here would beyond the scope of this paper.

The run-time behavior, the controller part, of a tasklet is encoded in a list of
event handler functions (eventHandlers field). Event handlers are defined using
the HtmlEvent type. Its only data constructor has three arguments: the identifier
of an HTML element, the type of the event and the event handler function.
During the instantiation of the tasklet on the client, the event handler function
is attached to the given HTML element to catch events of the given type.

The event handler functions work on the JavaScript event object (a value
of type JSValue in Clean) and the current internal state of the tasklet. They
also have access to the HTML Document Object Model (DOM) to maintain
their appearance. The DOM is a shared object from the point of event handlers,
therefore it can be manipulated only the way as IO done in Clean, through
unique types. That is, accessing the DOM is possible only using library functions
controlled by the unique *JSWorld type. This type is used in a similar way as
the type *World on the server. Introducing a new type to have IO on the client
has the advantage that reflects for the different purposes of client and server
side code. The server code can access all resources of the server computer, like
the file system, not available on the client; at the same time, the client code has
external access to a resource accessible only on the client: the DOM.

Following the tasklet definition, a wrapper task must be created to hide the
behavior of the tasklet behind the interface of a task:

mkTask :: (Tasklet st a) → Task a

The life cycle of a tasklet starts when the value of the wrapper task is requested.
First, generatorFunc is executed on the server to provide the initial state and
user interface of the tasklet. Then, the initial task state and the event handlers
defined in Clean are on the fly compiled to JavaScript and, along with the UI
definition, shipped to the browser. In the browser, the HTML markup is injected
into the page and the event handlers are attached. As events are fired, the related
event handlers catch them, and may modify the state of the tasklet and the
DOM. If the state is changed, resultFunc is called to create a new result value
that is sent to the server immediately. The life cycle of the tasklet is terminated
by the framework when the result value is finally taken by another task.

3.1 Seat choosing by map

Fig. 3. Choosing
a seat

To clarify the usage of tasklets, we enrich our example with
the aforementioned seat chooser component. So far the pas-
senger was to choose a seat from the list of available seats by
their designation. The new idea is to allow the user choosing
by looking at a simplified seat map of the airplane as it is
shown in Figure 3. For this, the Flight record is extended
with layout information:

:: Flight = { ...
, rows :: Int // Number of rows
, layout :: [Int] // Layout of a row
}

The rows and layout fields contain the number of rows on
the plane and the layout of the rows, respectively. If the lay-
out value is [2,3], rows consist of 5 seats in 2 groups: 2 seats,
corridor, 3 seats.

The signature of chooseSeat does not have to be
changed, we simply redefine its body:

chooseSeat (Just f) = mkTask seatChooserTasklet where

The internal state of the tasklet in this simple case is Maybe Seat. This expresses
that a seat is already chosen or has not been yet. At the beginning it is Nothing
(second value of the result of generatorFunc). According to resultFunc, the
tasklet results in the chosen seat if its state is not empty, otherwise no meaningful
value is propagated.

seatChooserTasklet :: Tasklet (Maybe Seat) Seat

seatChooserTasklet =
{ generatorFunc = (λworld → (TaskletHTML gui, Nothing, world))
, resultFunc = maybe NoValue (λv → Value v True)
}

The rowLayout function transforms the row layout description to a list of seat
numbers where corridors are denoted by -1:

rowLayout = intercalate [-1] (numbering 1 f.layout)
numbering i [] = []
numbering i [x:xs] =[take x [i..] : numbering (i+x) xs]

The result of this function can be straightforwardly mapped to HTML elements
in genRowUI. In this example, we use only one data constructor of an overly sim-
plified ADT to create HTML markup. The different kind of seats and the corri-
dors are all mapped to HTML div elements using the DivTag data constructor.
It has two list arguments, the first contains the description of the attributes, like
TitleAttr, IdAttr and StyleAttr, and the second one contains child elements.
For the sake of readability and simplicity the style attributes corridorStyle,
freeStyle, occupiedStyle and newRowStyle are neglected.

genRowUI (Seat _ -1) = DivTag [corridorStyle] []
genRowUI seat | elem seat f.free

= DivTag [TitleAttr (toString seat) , IdAttr (genSeatId seat) , freeStyle] []
= DivTag [TitleAttr (toString seat) , occupiedStyle] []

seatMap = DivTag [] (intercalate [DivTag [newRowStyle] []]
[map (λs → genRowUI (Seat r s)) rowLayout \\ r← [1 .. f.rows]])

The genRowUI function also takes into account whether the seat is still vacant
or not. If a given seat has not been occupied yet, it gets different color and a
HTML id attribute for the later attachment of event handlers. Finally, function
seatMap generates and merges the markups of different lines. The special style
attribute newRowStyle forces the browser to wrap subsequent div elements to
the next line. The function genSeatId generates unique identifiers for HTML
id attributes from a value of type Seat.

Now that we have defined the actual user interface, it is time to assign be-
havior to it. A seat should be chosen by simply clicking on it, furthermore, we
would like the free, selectable seats to be highlighted when the mouse pointer is
over them.

attachHandlers seat =
[HtmlEvent (genSeatId seat) OnClick (setState (Just seat))
, HtmlEvent (genSeatId seat) OnMouseOver (setColor "red")
, HtmlEvent (genSeatId seat) OnMouseOut (setColor "white")]

setState nst _ _ w = (nst, w)
setColor clr st e w = (st, setObjectAttr e "target.style.backgroundColor" clr w)

Three event handlers are attached to each div element representing free seat.
Clicking on one of them, the internal state of the tasklet is changed to indicate
the corresponding seat. This triggers the execution of resultFunc which creates
a value result to send to the server. As for highlighting, the color of the event
target is changed on moving mouse over and out.

Setting the state is done by creating a closure of the setState function. It is
an event handler function which does nothing more than return its first argument
as the new state. The OnMouseOver and OnMouseOut event handlers also create
a closure of the function setColor which simply set the background color of the
target of the event. This is done by the setObjectAttr library function which
sets an attribute of a JavaScript object. This function has a side effect thus
the *JSWorld type appears in its signature. It takes a reference to an external
object (JSValue), the name of an attribute and an arbitrary value. The value is
converted to its JavaScript equivalent then the attribute of the object is set.

setObjectAttr :: JSValue String a *JSWorld → *JSWorld

The tasklet run-time system is shipped with a library which contains a large set
of interface functions, similar to that of setObjectAttr. These functions enable
tasklets to directly interface with the enclosing JavaScript environment, e.g. to
access the HTML Document Object Model (DOM), create arbitrary JavaScript
objects (including HTML elements), read/write/create object attributes, or ex-
ecute methods of JavaScript objects. This low level, general library provides

unrestricted access to the JavaScript environment, and enables the development
of arbitrary higher level, special purpose libraries on top of it.

Finally, the last piece is the TaskletHTML record to assign the view (the
HTML markup) and controller (the event handlers) components:

gui = { html = HtmlDef seatMap

, eventHandlers = concatMap attachHandlers f.free

}

4 Use case studies

In this chapter, two real-world use cases of the presented tasklet architecture
are discussed to prove its usefulness. Both examples are taken from ongoing
projects of the iTask development team, and part of the current version of the
iTask system.

The first of these projects aims the
port of the Clean integrated devel-
opment environment, the Clean IDE,
to the iTask system. With this devel-
opment, we believe to achieve a web
based multi user development envi-
ronment, and to be able to refine the
semantics of the iTask combinators in
the same time. The iTask system ex-
cel at generating traditional graphical
user interfaces, however, there is one
component, namely the source code
editor, which cannot be generated in
any way. Thus, we decided to develop
a tasklet based on the CodeMirror
JavaScript text editor component. The tasklet we gained is well customizable
using a standard functional API, and seamlessly fits into the generated user
interface

The goal of the second project, called Tonic, is to develop an infrastruc-
ture to graphically represent the definition and behavior of tasks. It translates

a textual iTask specification into a graphical
one, called a blueprint. The Clean compiler
has been adjusted to generate blueprints, and
a standalone application, a Tonic viewer, writ-
ten in iTask, is developed to visualize them.
Such a blueprint is basically a general graph,
which consists of special kind of annotated
nodes and edges. To be able to draw graphs,
a general tasklet is developed. This tasklet is

able to create a graphical representation of a graph Graph n e, provided that a

Fig. 4. The architecture of client-side execution

GraphletRenderer n e instance for the given node and edge types exist. The
graph is given in a standard, functional way, while the renderer must provide a
description understandable by the D3 JavaScript library, on which the tasklet is
based.

5 The architecture of client-side execution

The client-side execution architecture is designed in such a way that the two
groups of functions, executed on the client versus executed on the server, are not
designated during compilation. Instead of this, two images of the same applica-
tion are produced by the Clean compiler: the server executable running in native
code and an intermediate representation that can be compiled to JavaScript (see
Figure 4). For the intermediate representation, the so called Simple Application
Programming Language (SAPL) [7], a core, lazy functional language is utilized.
It is used to execute arbitrary Clean expressions in the browser as follows:

0. There are two images produced by the Clean compiler: a server image (native
code, executable) and a SAPL image (intermediate representation);

1. The executable on the server is started;
2. Instead of evaluating an expression on the server, one can decide, at run-

time, to evaluate it on the client instead. This can in principle be done for
any expression;

3. The expression to evaluate on the client is at run-time converted to an equiv-
alent SAPL expression;

4. This SAPL expression is passed to the run-time linker specially developed
for this purpose. The linker collects the dependencies of the expression re-
cursively using the SAPL image of the application;

5. The result is run through a caching mechanism to filter out SAPL code
already processed in a previous session;

6. The remaining SAPL code is on the fly compiled to efficient JavaScript code
by a newly developed SAPL-to-Javascript compiler [6];

Fig. 5. The generalized tasklet architecture

7. The generated JavaScript code can be used e.g. by tasklets to perform com-
putation in the browser.

Therefore arbitrary Clean expressions of an iTask application can be executed
in the browser. Furthermore this is done by minimizing the necessary JavaScript
code shipped to the client which has the advantages of reducing communication
cost and memory usage of the browser.

6 Task evaluation on the client

Executing tasks is an intricate job compared to executing ordinary functions
because tasks have interactive behavior which needs life cycle management. The
difficulties can be understood by seeing the big picture of task evaluation logic.

A task basically consists of a state and a state transition function. When the
state transition function is executed, it produces (1) a new state (2) an abstract
description of the user interface of the task (hereafter Task User Interface, TUI)
and (3) an observable task value. Based on this, task execution involves the
following steps:

1. The state transition function is executed on the server to create the user
interface and the result value;

2. The result value can be observed by other tasks; they can decide to continue
with this current value. In that case the observed task is terminated;

3. The user interface information is sent to the browser to display;
4. If any event occurs on the client, it is passed to the state transition function

on the server and the procedure continues with step 2.

The standard way tasks are evaluated closely fits the architecture of tasklets:
(1) there is a distinct state to work on (2) the state transition function gener-
ates a new state and user interface just as we need in generatorFunc (3) the
user interface generates events (4) event handlers modify the state and the user

interface (see step 4). The consequence of this perfect fit is that it is possible to
define one general tasklet creator to run any task exclusively in the browser:

runOnClient :: (Task a) → Task a

The result of the runOnClient task is a tasklet in which the state transition
function of the enclosed task is utilized in generatorFunc and in the event
handlers. Neglecting any details, at this point the tasklet API was slightly gen-
eralized to enable these functions to create and interact with TUI elements in
addition to HTML. When the value of runOnClient anyTask is requested, the
state transition function of anyTask is called on the server to create the initial
user interface and state of anyTask. These, and the JavaScript counterpart of the
event handlers (implicitly containing the state transition function) are sent to
the browser. Figure 5 summarizes the client part of the generalized architecture:

1. In the browser the TUI elements are displayed;
2. The events emitted by the TUI are passed to an event dispatcher function

which can decide if the target of the event runs on the server or on the client;
3. In the latter case the event is forwarded directly to the wrapper tasklet

running on the client instead of being sent to the server;
4. The event handler of this tasklet executes the state transition function of

anyTask on the client to create a new state, result value and TUI definition;
5. If the result value is changed, it is shipped back to the server;
6. The user interface is updated by the TUI definition resulted by the state

transition function and the procedure continues with step 2.

6.1 Limitations

As for the current implementation there are some restrictions to the applicabil-
ity of the tasklet architecture. Some of them derives from the limitation of the
Clean to SAPL compiler and give constraints on the application of Clean lan-
guage elements: (1) tasks evaluated on the client can only produce higher order
functions as intermediate value. Higher order values cannot be returned as final
result, because the de-serialization of SAPL expressions into a Clean executable
is possible only in the case of first order values; (2) certain tasks are intended to
be executed on the server e.g. when a database is accessed, or global informa-
tion is shared between distributed tasks. Such tasks cannot easily be shipped to
the client, still a general solution is possible using a server side mediator service
which is being under development.

7 Related work

The iTask3 system with the tasklet extension is a unique multi-tier programming
language. In contrast to most web programming languages where the function-
ality is view-centric, built around the user interface, iTask proposes an inverted
development model: the trunk of an iTask application is generated by a func-
tional specification then augmented with custom web components.

Several other languages address multi-tier programming. In the imperative
world the most modern approach is the Google Web Toolkit (GWT) [1], Google
Dart [5] and Node.js [18]. GWT utilizes a Java to JavaScript compilation tech-
nique for building complex browser-based applications. GWT fosters classical
GUI programming where widgets can be developed using a programming model
comparable to that of tasklets.

The Dart language and the Node.js framework take a different approach.
They enable multi-tier programming by providing a run-time environment of
their languages for both client and server side. The language of Node.js is
JavaScript, which is native in the web browsers; the framework also provides
a run-time environment, including IO libraries, for the server side. Dart is a pro-
gramming language developed by Google specially designed for web application
engineering. On the client, it compiles to JavaScript, on the server it is executed
by a Dart virtual machine. However, these systems have a more general approach
than iTask and tasklets, they still share the idea of using the same language on
both client and server side and implicitly bridging the communication between
them.

Hop [15, 16] uses a declarative approach. It is a dedicated web programming
language with a HTML-like syntax built on the top of Scheme. Hop uses two
compilers, one for compiling the server side program and one for compiling the
client-side part. The client side part is only used for executing the user interface.
Hop uses syntactic constructions for indicating client and server part code. The
application essentially runs on the client and may call services on the server. In
contrast, an iTask application essentially runs on the server and may execute
services, tasklets, on the client.

Links [4] and its extension Formlets is also a functional language-based web
programming language. Links compiles to JavaScript for rendering HTML pages,
and SQL to communicate with a back-end database. In a Links program, the
keywords client and server force a top-level function to be executed at the
client or server respectively.

The iTask framework differs from the latter two by fostering a non view-
centric approach even in the component development. Links and Hop have ex-
tended syntax for embedding XML descriptions in the language; this is used
to mix the user interface definition and the behavior of the application. During
tasklet development the model-view-controller user interface design is enforced
to separate these roles.

Another important difference is that tasklets blur the boundaries of different
tiers. Links uses location annotations, Hop utilizes special syntactic construction
to denote the target tier of a given function or expression. In tasklets this is
implicit (basically the controller role runs in the browser) but unconcerned. If
a function is pure, it does not matter where it is executed. If it is not pure,
the available resources are controlled statically by the signature of the function.
Furthermore, the communication between the tiers is also implicit for tasklets.

As for iTask, there are earlier implementations of similar features utilizing
a Java written SAPL interpreter [7] as a browser plug-in. The iEditors [8] en-

ables the development of interactive web UI elements as tasklets do, however,
it does not allow direct access to browser resources, therefore its applicabil-
ity is restricted to functionality provided by the plug-in. As a consequence, it
does not have the single-language property either, because for some functional-
ity the plug-in has to be extended using Java. There also had been client-side
task evaluation attempts for an early version of iTask using the same plug-in
based interpretation technology [13]. However, our approach, to give one general
solution for both of the problems is a novel strategy.

8 Conclusion

In this paper we have presented a number of contributions to the iTask3 system, a
web-enabled combinator library written in the lazy functional language Clean. In
iTask, complex, multi-user web applications are generated from a mere functional
specification. However, up to now, the system lacks the possibility to create
custom, interactive web components.

We introduced tasklets, an extension to iTask3, for the development of inter-
active web components in a single-language manner. With this extension iTask3
becomes a unique multi-tier programming language which offers an unusual web
development model based on the enrichment of a generated trunk program. Fur-
thermore, in contrast to most multi-tier programming languages, the extended
iTask framework enforces the model-view-controller user interface design in com-
ponent development and blurs the boundaries of different tiers.

For the execution of Clean code in the browser, a special client-side execution
facility was developed. It is designed in such a way that instead of evaluating
an expression on the server, one can decide, at run-time, to evaluate it on the
client. The expression is compiled to JavaScript on the fly.

Finally, we showed that the presented tasklet facility can be generalized to
enable the execution of ordinary tasks in the browser instead of the server by
turning an arbitrary task into a tasklet. This, amongst other things, can be used
to improve the responsiveness of an iTask application by avoiding the latency of
communication.

Acknowledgements

The research of the first author was supported by the European Union and
the European Social Fund under the grant agreement no. TÁMOP 4.2.1/B-
09/1/KMR-2010-0003.

References

1. The Google Web Toolkit site. http://code.google.com/webtoolkit/.
2. P. Achten. Clean for Haskell98 programmers - A quick reference guide. Avalaible

at: http://www.st.cs.ru.nl/papers/2007/achp2007-CleanHaskellQuickGuide.
pdf, 13 July 2007.

3. Gregory Collins and Doug Beardsley. The snap framework: A web toolkit for
haskell. IEEE Internet Computing, 15(1):84–87, 2011.

4. E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming with-
out tiers. In Proc. of the 5th International Symposium on Formal Methods for
Components and Objects, FMCO’06, 2006.

5. DART. Dart : structured web programming, 2011.
6. L. Domoszlai, E. Bruël, and J.M. Jansen. Implementing a non-strict purely func-

tional language in Javascript. Acta Univ. Sapientiae. Informatica, 3(1):76–98, 2011.
7. J.M. Jansen, P. Koopman, and R. Plasmeijer. Efficient interpretation by trans-

forming data types and patterns to functions. In Proc. 6th Symposium on Trends
in Functional Programming, TFP’06, 2006.

8. J.M. Jansen, R. Plasmeijer, and P. Koopman. iEditors: extending iTask with
interactive plug-ins. In Proc. of 20th Int’l Conf. on Implementation and Application
of Functional Languages, IFL’08, 2011.

9. Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80. J. Object Oriented Program.,
1(3):26–49, Aug 1988.

10. B. Lijnse, J.M. Jansen, R. Nanne, and R. Plasmeijer. Capturing the Netherlands
Coast Guard’s SAR Workflow with iTasks. In Proc. of the 8th Int’l Conf. on
Information Systems for Crisis Response and Management, ISCRAM’11, 2011.

11. B. Lijnse, J.M. Jansen, and R. Plasmeijer. Incidone: A task-oriented incident
coordination tool. In Proc. of the 9th Int’l Conf. on Information Systems for
Crisis Response and Management, ISCRAM’12, 2012.

12. R. Plasmeijer and P. Achten. iData for the world wide web - programming intercon-
nected web forms. In Proc. of 8th Int’l Conf. on Functional and Logic Programming,
FLOPS’06, 2006.

13. R. Plasmeijer, J.M. Jansen, P. Koopman, and P. Achten. Declarative Ajax and
client side evaluation of workflows using iTasks. In Proc. of 14th Int’l Symposium
on Principles and Practice of Declarative Programming, PPDP’08, July 2008.

14. Rinus Plasmeijer, Bas Lijnse, Steffen Michels, Peter Achten, and Pieter Koopman.
Task-oriented programming in a pure functional language. In Proceedings of the
14th Symposium on Principles and Practice of Declarative Programming, PPDP
’12, pages 195–206, New York, NY, USA, 2012. ACM.

15. M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language for programming the
web 2.0. In ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA’06, 2006.

16. M. Serrano and C. Queinnec. A multi-tier semantics for hop. Higher-Order and
Symbolic Computation, 23:409–431, 2010.

17. Michael Snoyman. Developing Web Applications with Haskell and Yesod. O’Reilly
Media, Inc., 2012.

18. Lambert M. Surhone, Mariam T. Tennoe, and Susan F. Henssonow. Node.Js.
Betascript Publishing, Mauritius, 2010.

19. Peter Thiemann. WASH/CGI: Server-side Web Scripting with Sessions and Typed,
Compositional Forms. In Proc. 4th Int’l Symposium on Practical Aspects of Declar-
ative Languages, PADL’02, Jan 2002.

