
Parametric lenses: change notification for bidirectional lenses

László Domoszlai1,2 Bas Lijnse1 Rinus Plasmeijer1
1Radboud University Nijmegen, Netherlands, ICIS, MBSD

2Eötvös Loránd University, Budapest, Hungary, Software Technology Department
l.domoszlai@cs.ru.nl, b.lijnse@cs.ru.nl, rinus@cs.ru.nl

Abstract
Most complex applications inevitably need to maintain dependen-
cies between subsystems based on some shared data. The depen-
dent parts must be informed that the shared information is changed.
As every actual notification has some communication cost, and ev-
ery triggered task has associated computation cost, it is crucial for
the overall performance of the application to reduce the number
of notifications as much as possible. To achieve this, one must be
able to define, with arbitrary precision, which party is depending
on which data. In this paper we offer a general solution to this gen-
eral problem. The solution is based on an extension to bidirectional
lenses, called parametric lenses. With the help of parametric lenses
one can define compositional parametric views in a declarative way
to access some shared data. Parametric views, besides providing
read/write access to the shared data, also enable to observe changes
of some parts, given by an explicit parameter, the focus domain.
The focus domain can be specified as a type-based query language
defined over one or more resources using predefined combinators
of parametric views.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Specialized application languages

Keywords Bi-directional programming, lenses, parametric lenses,
parametric views, notification systems

1. Introduction
Complex applications commonly have to deal with shared data. It
is often confined to the use of a relational database coupled with
a simple concurrency control method, e.g., optimistic concurrency
control [21]. In other cases, when a more proactive behavior is re-
quired, polling or some ad hoc notification mechanism can be in-
voked. At the farther end of the range there are some very involved
applications (multi-user applications, workflow management sys-
tems, etc.), which are based on interdependent tasks connected by
shared data. In the most general case, one has to deal with com-
plex task dependencies defined by shared data coming from diverse
sources, e.g. different databases, shared memory, shared files, sen-
sors, etc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’14, October 1–3, 2014, Boston, MA, US.
Copyright c© 2014 ACM 978-1-4503-3284-2/14/10. . . $15.00.
http://dx.doi.org/10.1145/2746325.2746333

Figure 1. Ships around the Dutch coast

As an example, consider the following case which is based on
a prototype we have developed for the Dutch Coastguard [22]; it is
used throughout the paper to introduce the problem, and the con-
cepts of the proposed solution. We have a small database which acts
as a source of data of ships: name, cargo capacity, last known po-
sition, etc. The positions of the ships are updated repeatedly as the
ships move; ships have a transponder on board which sends their
latest position on a regular basis. As a basic task, we simply want
to show the positions of the ships on a map, of which users are al-
lowed to select a region to view, the focus of their interest. In this
setting we can think of map instances and update processes as inter-
dependent tasks that are connected by the data of ships they share.
When the position of a ship is updated in the database, the map in-
stances, of which focus covers the old or the new coordinates, must
be refreshed.

From a theoretical perspective, it would be correct behavior to
notify every map instance on every ship movement. However, this
leads to huge efficiency issues in practice. There are many thou-
sands of ships in the North Sea constantly moving around. Only
those map instances need to be refreshed in which region the po-
sition of a ship is changed. As every actual notification has some
communication cost, and every triggered task has associated com-
putation cost, it is crucial for the overall performance of the appli-
cation to reduce the number of notifications as much as possible.

Figure 2. The notification problem

Thus, we need a notification system which, for efficiency reasons,
can be as accurate as needed for optimal efficiency.

As the problem described above is a very common computa-
tional pattern, we would like to offer a general, reusable solution.

From the computational perspective, focusing on a specific do-
main of the underlying data can be achieved by creating and work-
ing with one of its abstract views. Lenses [7, 8, 12–14, 17, 18, 35]
are commonly used for creating abstract views. They can be used
to support partial reading and writing, for access restriction or to
provide a specific view of the data. Lenses enable to define bidirec-
tional transformations. In a nutshell, a lens describes two functions
to map the input to an output and backwards.

In our example two kind of abstract views are needed for ser-
ving different processes: one to show the ships located in a given
region of the map, and another one for the update process, which
periodically updates the coordinates of a ship in the database.

The general notification problem is depicted in Figure 2. Given
is a set of shared data sources of any type (A and B in the picture)
holding a set of data (DA, DB). There are also given some lenses
defined on top of the data sources and on each other. These are
L1, L2, L3 and L4 in the picture. The additional subscripts of the
original data sets, DA and DB , denotes the sets of data we gain
after applying a series of lenses to the original data sets (e.g.DA,L2

denotes the set of data that can be seen from A through L2). One
typical question can be, e.g., whether a given update through L4

affects the DA,L1 or not? What about the other way around?
Unfortunately, classical lens theory does not provide any tool to

discover whether a given update through some lens affects the data
that can be seen through another lens. In this paper we present a
general extension to lenses as a solution for this general problem.
In this extension, called parametric lenses, lenses are partially de-
functionalized to extract a first-order parameter, the focus domain,
that groups a set of similar lenses into a single parametric lens in
which the parameter essentially encodes which part of the input do-
main is mapped to the output domain by the lens. This additional
focus information will enable to read, update, and observe specific
parts of the underlying data.

Parametric lenses are pure, thus cannot be applied to some
shared data directly, they must be lifted into an impure context.
Therefore, they are attached to the shared data through a non-pure
abstract interface called parametric view. The parametric views are
allowed to be composed using predefined combinators. Using these
combinators, one is able to specify the focus domain as a type-
based query language defined over one or more resources. With the
query language, one can focus on a specific part of the underlying
shared data during reading, writing, or it can be used for notification
purposes.

We use two examples throughout the paper to present our solu-
tion. The first example is based on the simplest form of parametric

views and it is compact enough to give a nice insights in the main
idea; it shows how to find a node, by some property, in an arbi-
trary tree structure. The selected node can be used then not only for
reading or updating, but also for observing its changes.

The second example, our motivating one, is slightly more com-
plex, and requires the introduction of additional combinators. For
its development we parametrize some relational lenses developed
in [8] for solving the so called view-update problem.

We offer the following contributions in the paper:

1. We introduce parametric lenses as a general extension to bidi-
rectional lenses. Parametric lenses enable the development of
efficient notification systems based on them. Parametric lenses
are embedded into compositional parametric views which are
defined over shared data;

2. We implement the executable semantics, using Haskell [30],
of the combinators and an underlying notification engine. The
complete Haskell implementation, along with the examples de-
veloped in the paper, can be found at https://wiki.clean.
cs.ru.nl/File:PViewIFL.zip;

3. We develop two examples in the paper to demonstrate the usage
of parametric lenses. An introductory example based on a sim-
ple recursive data structure, and a simplified real world example
based on the iTasks coastguard prototype described above.

The remainder of this paper is structured as follows: in Section 2,
after a brief overview of classical lenses, the parametric extension
is introduced in Section 3. In Section 4, we introduce parametric
views. In Section 5, the realization of the parametric and the classi-
cal, non-parametric variants of lenses, in the setting of parametric
views, are contrasted. The first, introductory example is developed
in Section 6. Then, before we proceed with more advanced cases, a
new combinator is introduced in Section 7 to be able to join views
of different data sources together. Using this combinator, our sec-
ond, motivating example is developed in Section 8. In Section 9,
an alternative implementation is provided of the second example to
increase the accuracy of the notifications. It is followed by a dis-
cussion of related work in Section 10 and concluding remarks in
Section 11.

The executable semantics and the examples are written in
Haskell [30], and they are also dependent on some extensions of the
Glasgow Haskell Compiler (GHC) [26] and its libraries. The given
implementation and example code uses the following language ex-
tensions and libraries: generalized algebraic datatypes (GADT) [1],
the Data.Typeable package [3], monads [34] (and in particular the
State [4, 34] and Writer [5, 19] ones), monad transformers [2]
and applicative functors [27]. Their basic knowledge is necessary
for the comprehension of the paper.

2. Introduction to Lenses
The starting point for this work is the class of bidirectional trans-
formations known as lenses. Thus, in this section a brief overview
of lenses is given to explain what they are, and how they work.

Lenses enable the definition of bidirectional transformations.
In a nutshell, a lens describes two functions to map the input (or
source: X) to an output (or view: Y) and backwards. The get
function maps the input to some output, while the put function
maps the modified output, together with the original input, to a
modified input:

get ∈ X → Y
put ∈ Y ×X → X

Lenses are expected to obey the following “round-tripping” laws
for every x ∈ X and y ∈ Y :

put (get x) x = x (GETPUT)
get (put y x) = y (PUTGET)

These laws express fundamental expectations about how the com-
ponents of a lens should work together. The GETPUT law (also
known as consistency [35]) ensures that all updates on a view
are captured by the updated source, while the PUTGET law (also
known as acceptability) prohibits changes to the source if no up-
date has been made on the view. Lenses obeying these laws are
called well-behaved [12].

Sometimes a third law, called PUTPUT, is also considered. For
every x ∈ X and y, y′ ∈ Y :

put y (put y′ x) = put y x (PUTPUT)

This law states that the effect of a sequence of two puts is just the
effect of the second. Well-behaved lenses which also satisfy the
PUTPUT law, are called very well-behaved.

In the next section we go beyond the classical theory and
parametrize lenses. With a parametrized lens, we can focus on a
specific part of the underlying data for reading, writing and observ-
ing.

3. Introduction to Parametric Lenses
In the parametric lens extension classical lenses are partially de-
functionalized to extract a first-order parameter (the focus domain:
Φ, Ψ) that groups a set of similar lenses into a single parametric
lens in which the parameter essentially encodes which part of the
input domain is mapped to the output domain by the lens. Paramet-
ric lenses additionally return a predicate in the put direction. This
predicate, called the invalidation function, encodes the semantic in-
formation associated with the focus domain.

getF ∈ Φ×X → Y
putF ∈ Φ× Y ×X → X × (Φ→ Bool)

The invalidation function tells whether the particular update with
some focus affects a given other focus from the same domain or
not. To illustrate the role of this function, consider the following
sequence of operations (φ, ψ ∈ Φ, x, x′ ∈ X , y, y′, z ∈ Y and
inv ∈ Φ→ Bool):

y = getF φ x

(x′, inval) = putF ψ z x

y′ = getF φ x′

We say that the invalidation function inval is consistent if y 6=
y′ ⇒ inval φ = True. If y 6= y′ ⇔ inval φ = True, we say
that inval is accurate. Consistency is a fundamental property, all
invalidation functions must satisfy it. It expresses the fundamental
requirement that all the actual changes can be observed, but also
allows false notifications. Accuracy however is not obligatory and,
especially when different focuses can overlap, may not be imple-
mented effectively in practice. Nevertheless, during the develop-
ment of parametric lenses, one should aim for accuracy to effec-
tively reduce the number of triggered notifications (as an example,
the constant True function satisfies consistency).

With the extended functions, the round-tripping laws take the
following form for every φ ∈ Φ, x ∈ X and y ∈ Y :

fst (putF φ (getF φ x) x) = x (GETPUT)
getF φ (fst (putF φ y x)) = y (PUTGET)

data PView φ m a where
Source :: (Monad m,Typeable φ)

⇒ Source φ m a
→ PView φ m a

Project :: (Monad m,Typeable φ)
⇒ PView φ m a → Lens a b
→ PView φ m b

Focus :: (Monad m,Typeable φ,Typeable ψ)
⇒ PView φ m a → ParametricLens ψ a b
→ PView (φ, ψ) m b

Product :: (Monad m,Typeable φ,Typeable ψ)
⇒ PView φ m a → PView ψ m b
→ PView (φ, ψ) m (a, b)

Figure 3. The PView type

The PUTPUT law is the following for every φ ∈ Φ, x ∈ X and
y, y′ ∈ Y :

putF φ y (fst (putF φ y′ x)) = putF φ y x (PUTPUT)

The elements of a given focus domain, e.g. φ ∈ Φ, are called the
focuses. The semantics of the focuses are encoded by the invalida-
tion function, and there is no general restriction on them; they can
denote an arbitrary part of the underlying data, and, for instance,
they can also overlap in an arbitrary way.

In our example, the focus domain can be the set of possible
contiguous regions of the map. The elements of this domain, the
focuses, are just individual regions of the map, which can overlap.
It is the task of the invalidation function to predicate whether two
values of the focus domain, two regions, actually overlap or not.

In the next section we introduce parametric views to implement
this idea. In this implementation focus domains take the form of
types, and the actual focuses of the domain are values of this type.

4. Introduction to Parametric Views
A parametric view is a compositional abstract interface to provide
access to some shared data in a general way. The interface enables
the underlying data to be read, written and observed according to
a domain of focus. In this section we present the basic structure of
parametric views and extend it later in the paper.

A parametric view is represented by the (PView φ m a)
generalized algebraic data type (GADT), see Figure 3. The type
parameter φ is the focus domain, the type of the focus parameter,
which must be Typeable (this requirement is explained later on in
this section). The type m is any monad which provides access to
the underlying shared data. Finally, a is the type of the values that
can be read from and written into the view.

The PView data constructors play the role of combinators.
With the combinators, one can create a view based on some shared
data (the Source combinator, introduced later on in this section),
change the focus domain or the associated read/write type of the
view (Focus and Project combinators, see Section 5), or one can
combine views to synthesize a compound one (Product combina-
tor, see Section 7).

The interface of a parametric view consists of three functions:
the read and update functions for reading and writing the view, and
the observe function to ask for change notifications:

type ObserveId = String
type ObserveHnd m = m ()

read :: (Monad m,Typeable φ)
⇒ PView φ m a → φ→ PViewT m a

update :: (Monad m,Typeable φ)
⇒ PView φ m a → φ→ a → PViewT m ()

observe :: (Monad m,Typeable φ)
⇒ PView φ m a → φ→ ObserveId → ObserveHnd m
→ PViewT m ()

The first two arguments of these functions are the parametric view
of type (PView φ m a) and the actual focus value of type φ. The
observe function further takes a unique identifier of the subscription
(ObserveId , a string value for the sake of simplicity), and an
event handler function (an action in the monad m). The ObserveId
argument is used e.g. to remove the subscription later.

The interface functions are monadic, they are based on the
PViewT monad transformer, which basically introduces a state.
The definition of this PViewT type, along with the explanation of
its purpose is given later on in this section.

Type m is constrained to be a Monad , but also used as an ap-
plicative functor to provide a more applicative style implementa-
tion. It is assumed that Applicative ⇒ Monad .

The Source type describes how to interface with the actual data
source in the associated monad. A parametric view is created from
a Source description by the Source data constructor of the PView
GADT (see Figure 3). A Source is already parametric, thus the
provided access functions require a focus value:

data Source φ m a where
MkSource :: (Monad m,Typeable φ)

⇒ (φ→ m a) -- sread
→ (φ→ a → m (Invalidate φ)) -- supdate
→ Source φ m a

The sread function takes a focus and reads data according to that
specific focus. The supdate function updates the part of the under-
lying data which is denoted by the focus value in the first argument.
The new data is given in the second argument. After the update, it
returns the invalidation function, discussed in the previous section.

type Invalidate φ = φ→ Bool

Reading a Source is straightforward, as the request is just for-
warded to the underlying data source (the other alternatives of the
read function are given later when the related data constructors of
the PView GADT are introduced in detail):

read (Source (MkSource sread)) p = lift (sread p)

The update and observe interface functions are more elaborate as
those are involved in the notification process. The idea is to save
the notification requests in a state monad (the associated functions
of the state monad are qualified with ST in the paper), then lookup
and trigger the event handlers of the matching ones during updates.

The state of the notification engine is introduced by the PViewT
monad transformer, and it keeps the list of notification requests.
The observe interface function maintains the list of requests in
the state monad, which is used by the update function to trigger
notifications.

type PViewT m = StateT [NRequest m] m

-- a notification request consists of an id, an event handler,
-- and the observed focus which is encoded in a Dynamic

data NRequest m
= NRequest ObserveId (ObserveHnd m) Dynamic

To save a request we need a comparable reference to the observed
view; as the view contains functions only, saving itself would be
pointless. Obviously, a machine address based identification is not
feasible in a pure functional language, and generating identifiers
is not viable either since we want to define the views in a pure,
declarative way; for generating unique identifiers, a state would be
required. We could require the developer to provide an identifier
along with the views. However, we would like two views, defined
at two different parts of the application using the same combinators
with same arguments, to be equal. That would be error prone with
explicit view ids.

However, the type of the focus domain is a perfect candi-
date for identification as it assigns a unique semantic informa-
tion to the view. It is realized using the standard GHC extension,
Data.Typeable . This extension enables us to associate type repre-
sentations to (monomorphic) types, then, e.g., compare these rep-
resentations. This is the reason why the types of the focus domains
have to be Typeable . Note, however, that using the focus domains
for identification, imposes a uniqueness requirement on them: fo-
cus domains must be unique between the semantically different
parametric views.

In accordance, the reference is encoded as a value of type
Dynamic; the associated type is the actual reference to the view,
while the associated value is the focus value to be observed.

With the exception of the Source data constructor, a parametric
view is recursively defined by the help of other parametric views,
creating in this way a directed acyclic graph. As this graph is
created in a pure way, it does not have back edges. When a given
node is updated, its parents cannot be informed to evaluate the
notification requests which are in their focus domain.

observe :: (Monad m,Typeable φ)
⇒ PView φ m a → φ→ ObserveId → ObserveHnd m
→ PViewT m ()

observe v p oid ohnd = do
rs ← genreqs v p -- generate implicit notification requests
ST .modify (map (NRequest oid ohnd) rs++)

To overcome this limitation, the observe function puts implicit
notification requests on all of the views of the subgraph denoted by
the target view. During an update, the most adequate of these, the
one which has the least distance to the updated view, is triggered.
These implicit notification requests are generated recursively by the
genreqs function.

The genreqs function, when applied to the Source data con-
structor, straightforwardly creates a one-element list storing the fo-
cus value provided for the Source:

genreqs (Source) p = return [toDyn p]

Similarly to the observe function, the update interface function
creates notification events of type NEvent m for all the views of
the subgraph denoted by the updated parametric view (by update ′);
then, in a subsequent step, it matches up these events with the stored
notification requests (by trigger , defined further on). Please notice
that for the sake of providing concise code, the Writer monad
transformer is exploited in update and update ′; its associated
functions are qualified with W in the paper.

update v p a
= W .execWriterT (update ′ v p a)>>= trigger ◦ reverse

The update ′ function traverses the graph of views in a recursive
manner during an update. It returns the invalidation function of
the given view, which is used to create a computed one in the
recursion step. It also generates a notification event for every view
on the paths to the roots and stores them in a Writer monad. The
actual update happens at the Source views in the roots, but all the
invalidation functions computed for the non-leaf views have further
information on the exact range of affected data.

-- a notification event consists of a reference to the source
-- view and the associated invalidation function

data NEvent m
= ∃φ. Typeable φ⇒ NEvent TypeRep (Invalidate m φ)

update ′ :: (Monad m,Typeable φ)
⇒ PView φ m a → φ→ a
→WriterT [NEvent m] (PViewT m) (Invalidate m φ)

The update ′ function, when applied to a Source , just forwards the
request to the underlying data source:

update ′ (Source (MkSource supdate)) p a
= (lift ◦ lift) (supdate p a)>>= λinval → returnE p inval

returnE p inval
= W .tell [NEvent (typeOf p) inval]>> return inval

Finally, in the trigger function, the notification events generated
by update ′ are matched with the stored notification requests. It
matches every event with every request, but for a given observation
id, it takes the most adequate (which happens to be the first match),
and the remaining are skipped:

trigger :: (Monad m)⇒ [NEvent m]→ PViewT m ()
trigger es = do

rs ← ST .get -- read notification request
foldM (λskips event

→ foldM (match event) skips rs) [] es

-- match a request to with an event
-- event handlers are executed only once (using the skips list)

match (NEvent vid inval) skips (NRequest oid ohnd dyn)
| notElem oid skips ∧ dynTypeRep dyn ≡ vid

= case fromDynamic dyn of
Just p → when (inval p)

(lift ohnd)>> return (oid : skips)
Nothing → return skips

match skips = return skips

The basic structure of the notification engine is now sketched out.
Based on this foundation, the semantics of the remaining combina-
tors are introduced in the consequent sections step by step as they
are needed for the development of the examples.

5. Lens combinators
In this section parametric lenses are introduced in the context
of parametric views in parallel with the introduction of classical
lenses. In this way the two concepts, parametric and non-parametric
lenses, can be easily contrasted. With parametric lenses, we are able
to develop our first example in the next section.

There are many ways to represent lenses in a functional lan-
guage like Haskell. For example, the lenses in the popular Con-
trol.Lens GHC package [20] are Laarhoven style lenses [33] im-

plemented as functional references based on applicative functors.
We could use the same representation for classical lenses, how-
ever it is not directly clear how the parametric variant would work
with this technique. This is the main reason that we decided for a
straightforward, record based representation. Another reason is that
in our experience, the classical representation as a pair of functions
is easier to comprehend.

Classical lenses
A classical lens is represented by the Lens record type and applied
to a view by the Project combinator of the PView GADT. When
a lens of type (Lens a b) is applied to a parametric view of type
(PView φ m a), the resulting view (type of PView φ m b) has
the same focus domain inherited from the underlying view. This
is expected as the classical theory has nothing to do with focus
domains. The types of get and put components of the Lens record
type also straightforwardly reflect the classical theory:

data Lens a b = MkLens {
get :: a → b,
put :: a → b → a
}

When a Project node of a parametric view is read, the value read
from the underlying view is mapped by the get function of the lens.
Similarly, in the write direction, the underlying view is read first,
then the put function is used to incorporate the write value into the
underlying data, which is updated in a final recursive step.

read (Project v l) p = get l <$> read v p
update ′ (Project v l) p a

= lift (read v p)>>= λs → update ′ v p (put l s a)

The Project nodes are simply ignored by the genreqs function as
they do not contain any additional focus information:

genreqs (Project v) p = genreqs v

Parametric lenses
The parametric variant of the classical lens is represented by the
ParametricLens record type and applied to a view by the Focus
combinator. The combination of a view of type (PView φ m a)
and a parametric lens of type (ParametricLens ψ a b) results in
a parametric view of type (PView (φ, ψ) m b). That is, using the
focus domain of the parametric lens, the focus domain of the initial
view is refined.

The components of the ParametricLens record type, the getF
and putF functions, in accordance with the formal introduction,
extend the classical functions with focus information and with the
invalidation function:

data ParametricLens ψ a b = MkPLens {
getF :: ψ → a → b,
putF :: ψ → a → b → (a, Invalidate ψ)
}

When a Focus node of a parametric view is read, first the under-
lying view is read recursively using the corresponding element of
the focus value, then getF is applied to the read value along with
the second element of the tuple of the focus value (this is the only
difference compared to the classical case):

read (Focus v l) (p, q) = getF l q <$> read v p

The update logic is more different, compared to the classical case,
when a Focus node of a parametric view is updated. First the

original input value is read recursively from the underlying view
using the corresponding element of the focus value. After that,
putF , the put part of the parametric lens, is applied to this original
input value and the provided new output value along with the
other part of the focus value to compute a new input value; it
also returns a partial invalidation function, covering the ψ type.
Then, the underlying view is updated recursively using the newly
computed value; the update process also returns another partial
invalidation function, covering the φ type. Finally, the two partial
invalidation functions are combined together to cover the whole
focus domain: it states that the validation can be safely decided
solely by the invalidation function coming with the parametric lens,
if the focus related to the underlying view is the same in the update
and in the notification request.

update ′ (Focus v l) (p, q) a = do
s ← lift $ read v p
let (s ′, invall) = putF l q s a
invalw ← update ′ v p s ′

returnE (p, q) (comp invall invalw)
where

comp invall invalw (p′, q ′)
| p ≡ p′ = invall $ q ′

| otherwise = invalw p′

In genreqs , an implicit notification request for the Focus view is
generated prior to the recursion step:

genreqs (Focus v) p = (toDyn p:) <$> genreqs v (fst p)

Above we gave the formal semantics of the most important com-
binators. In the following sections we give a more intuitive insight
into their behavior through a series of illustrative examples.

6. First example: Self service storage
Let us consider that we own a company which provides self-service
storage for its customers. The customers hire storage space, or just
let us store some objects for them. The storage space is structured
in a hierarchical manner: there are multiple buildings which contain
rooms, the rooms have shelves or lockers which may contain boxes
with some objects or the objects directly. The actual hierarchy is
very flexible, and varies between buildings and rooms.

We would like to develop a piece of software to maintain the
locations and properties of the objects we handle. The software
will be based on the rose tree data structure as it is simple, but still
flexible enough to describe any necessary hierarchies. The element
type of the tree describes a container which has a type, properties
and also can contain object items. Items have properties like name,
quantity, etc.

-- The store is a hierarchy of containers
data RoseTree a = RoseTree a [RoseTree a]
type Store = RoseTree Container

-- Containers are a collection of properties and object items
data Container = Container CType [Property] [Item]
data CType = Building String | Room String | ...
data Property = Owner String | ...
data Item = Item {name :: String , ...

There are two important requirements for the system: (1) we want
to be able to find a container by an arbitrary property, and (2) we
also want to be able to observe the changes of an arbitrary container
or subtree. An example for the latter is that we may want to be
informed when a specific object is removed from a container. In the

following, we show how to implement these requirements based on
parametric views.

type StoreT -- monad transformer for accessing storage data
type StoreView q = PView q StoreT Store

-- unique focus domain for storage data
data StoreSource = StoreSource deriving Typeable

store :: StoreView StoreSource
store = Source (MkSource sread supdate) where ...

First a base view must be implemented to provide access to the
underlying data in a monad. The view has a simple, flat focus
domain, StoreSource , to identify the source of the data which is
available in the monad StoreT . The base view, the store function is
created using the Source combinator (the definition of this function
is simple, but depends on the actual monad, which is not important
for the main idea, and thus not included here).

The implementation is based on a single parametric lens which
enables to go one level down in the hierarchy by focusing on one
of the children of a tree. The lens has the Selector focus domain
with one data constructor to provide the index of the child:

data Selector = S {unS :: Int } deriving Typeable

selectLens :: ParametricLens Selector Store Store
selectLens = MkPLens {getF = get , putF = put } where

get (S i) (RoseTree cs) = cs !! i
put (S i) (RoseTree r cs) c =

(RoseTree r (take i cs ++ [c] ++ drop (i + 1) cs),
λ(S j)→ j ≡ i) -- invalidation function

In the get direction, one of the children is selected straightforwardly
based on the current focus value. The put direction is also straight-
forward, the indicated child is replaced with the given subtree; still,
the invalidation function requires some consideration.

As we want to go deeper and deeper in the hierarchy, selectLens
must be applied again and again, thus creating a wider focus do-
main. For example, applying the lens twice to the base view, we get
the following:

store ‘Focus‘ selectLens ‘Focus‘ selectLens
:: StoreView ((StoreSource,Selector),Selector)

This view enables us to select any child from the second level by
providing a specific focus value e.g. ((StoreSource,S 1),S 0)
selects the first child of the second child of the root element. This
example also gives us the insight that two different values from the
same focus domain always select different parts of the underlying
data, in other words there is no overlapping. In this case, deciding
whether a given update affects a focus or not, simply reduces to
comparing the focus values. This is encoded in the invalidation
function returned by put . In the ship example developed later on,
this property does not hold, which makes the invalidation functions
non-trivial.

Finally, the function which finds a container based on a predi-
cate function is as follows:

findFirst :: Typeable q ⇒ StoreView q → q
→ (Container → Bool)
→ PViewT StoreT (Result)

findFirst v q pred = do
(RoseTree container children)← read v q
if pred container

then return $ Just $ StoreResult v q
else case children of

[]→ return Nothing
→ searchChildren (length children)

where
searchChildren 0 = return Nothing
searchChildren i = do

res ← findFirst focusView (q ,S (i − 1)) pred
case res of

Nothing → searchChildren (i − 1)
→ return res

focusView = v ‘Focus‘ selectLens

data Result where
Result :: Typeable q ⇒ StoreView q → q → Result

First, the container of the root element is checked, then its children
one by one if the container did not satisfy the predicate. For check-
ing the children, the selectLens is applied to the view to be able
to focus on one more level deeper, then the findFirst function is
called recursively.

The only part to be considered is the return type. To be able to
point out a specific part of the shared data, we need to return a view
which has the proper focus domain, and a focus value of the same
type. The main problem here is that the type of the focus domain
is not known in advance as it depends on the actual structure of the
data, and on the location of the sought container inside it.

Thus, the return value of the function cannot be typed directly.
However, it is not even necessary: the API functions depend on the
Typeable property of the focus domain only. This idea is encoded
in the Result type. After the values from the Result data construc-
tor are unwrapped, they can be used to read or update the returned
view, use some combinators on it, or to observe the view.

7. Joining multiple sources
Before we continue with our main example, one more combinator
must be introduced. A very common situation is where the data we
are working on, is coming from multiple sources. In the aforemen-
tioned example of ships, there are two sources of data, one for the
actual ship data and one for the current positions of the ships. It
is also common that the data coming from the different sources is
dependent; e.g. the position data provides additional properties of
the ships. In this case, one may want to create a joint view based on
the individual views e.g. a relational join of the ships and positions.

This can be achieved using the Product combinator. This com-
binator takes two views and simply tuples their focus domains and
view types together. It only requires that the views share the same
monad type.

When a Product view is read, the two underlying views are
read one by one, then the results are simply put together in a tuple:

read (Product vl vr) (p, q)
= (,) <$> read vl p <∗> read vr q

During updating, first the underlying views are updated, then a new
invalidation function is created which fires when at least one of the
invalidation functions, resulting from the recursive updates, fires:

update ′ (Product vl vr) (p, q) (a, b) = do
invall ← update ′ vl p a
invalr ← update ′ vr q b
return $ λ(p, q)→ invall p ∨ invalr q

In genreqs , no notification event is generated for the combined
view, only for the underlying ones. It is not necessary as the un-
derlying views generate their own events which cover the whole
focus domain of the combined one.

genreqs (Product vl vr) (p, q)
= (++) <$> genreqs vl p <∗> genreqs vr q

In the following section, our main example is developed, which
gives an intuition on how to use this combinator in practice.

8. Second example: Filtering ships
At this point we have all the tools to pick up the main exercise
where we left it in the introduction. As a recap, we have two
databases holding ship data and location data. We develop the
following views (to develop our motivating example, we could use
the second one for updating the positions of ships, and the last one
to acquire the data of ships located in a specific region):

• Which ships have a given cargo capacity?
• Where is a given ship?
• Which ships are in a given region of the world?

The purpose of these views is not only to read and update the shared
data, but we also would like to observe the data behind them (to be
notified when the data of a view has changed).

The structure of the implementation is the following. All the
views are built on two base views which access the data sources.
First, filtering parametric lenses are applied to the base views. In
the next step, a joint view is created from the filterable views using
the Product combinator introduced in the previous section. Finally,
the joint view is turned into a view of natural join of the ship and
position records using a classical, non-parametric lens.

We work with lists of records, which makes the problem very
similar to the classical view update problem well-known in the
database literature [6, 16]. The view update problem arises from the
fact that when the view update is translated to a database update,
there exist more than one database update that may correspond to
the same view update.

It is out of the scope of this paper to deal with this problem,
but fortunately, the view update problem is already investigated in
the context of bidirectional lenses [8, 12]. Thus, the lenses in this
section are based on the relational lenses developed in [8].

The ship and position data is defined by the following record
types:

data Ship = Ship
{s name :: String
, s capacity :: Int
}

data Position = Position
{p ship name :: String
, p position :: Coord
}

type Coord = (Double,Double)

The base views, the ships and positions functions, use these types
and flat focus domains as in the previous example. The implemen-
tation of these functions is not included, because it is irrelevant
from the perspective of parametric lenses:

ships :: PView Ships ShipsT [Ship]
positions :: PView Positions ShipsT [Position]

-- monad transformer for accessing ship data
type ShipsT

-- focus domains
data Ships = Ships deriving Typeable
data Positions = Positions deriving Typeable

To create filterable views, we use the following generic parametric
lens:

selectLens :: (f → a → Bool)→ ParametricLens f [a] [a]
selectLens pred = MkPLens {getF = get , putF = put }

where
get = filter ◦ pred
put f ss vs = (m ′ ++ vs, inval)
where

(m,m ′) = partition (pred f) ss
inval f ′ = any (pred f ′) (m ++ vs)

It is a polymorphic function that creates a parametric lens based on
a predicate function. The predicate function decides whether some
value of type a satisfies some properties, defined by a value of type
f , or not. Type f becomes the focus domain of the parametric lens,
while its value type becomes a list of type a . With this parametric
lens, we can effectively filter a list of data, where the parameter of
the filtering is represented by the f type.

The implementation of this parametric lens is based on the
select lens definition in [8]. In the get direction, it simply filters
the list using the predicate. In the put direction, the original data
is split into two: m contains those elements of the original list (the
source list, ss) which are affected by the view, that is, replaced
by the view data, vs . The unaffected elements are in m ′. The new
source list is the concatenation of the unaffected data m ′ and the
view data, vs .

The invalidation function encodes the idea that a focus is af-
fected by an update, if any of the replaced or the new records (the
list of the unaffected data m and the view data, vs) satisfy the pred-
icate indicated by the focus value.

The filterable views are easy to define now using the selectLens
function:

-- additional focus domain for Ships
data ShipFilter = SNameEQ String

| CapacityGT Int deriving Typeable

filteredShips :: PView (Ships,ShipFilter) ShipsT [Ship]
filteredShips = ships ‘Focus‘ (selectLens shipPred)

shipPred (CapacityGT c) s = s capacity s > c
shipPred (SNameEQ n) s = s name s ≡ n

-- additional focus domain for Positions
data PositionFilter = WholeWorld

| PNameEQ String
| AreaIN (Coord ,Coord)
deriving Typeable

filteredPositions
:: PView (Positions,PositionFilter) ShipsT [Position]

filteredPositions = positions ‘Focus‘ (selectLens posPred)

posPred (WholeWorld) = True
posPred (AreaIN ((x , y), (x ′, y ′))) p

= inside (p position p)
where

inside (a, b) = a > x ∧ a 6 x ′ ∧ b > y ∧ b 6 y ′

posPred (PNameEQ n) p = p ship name p ≡ n

The ShipFilter and PositionFilter focus domains are rather ad-
hoc here. The filtering predicates can be arbitrarily complex which
makes it difficult to find the proper data type to encode them. Thus
one may want to use a complex, generic type to describe filters. In
this case the actual filter values can be given by a small DSL like
in Groundhog [23]. However, providing any particular tool here
would beyond the scope of this paper, and in this simple case, these
types are satisfactory for presentation purpose.

The next step is to join the filterable views together using the
Product combinator:

jointView :: PView
((Ships,ShipFilter), (Positions,PositionFilter))

ShipsT
([Ship], [Position])

jointView = filteredShips ‘Product ‘ filteredPositions

Unfortunately, we are not ready yet. The value type of the joint
view, ([Ship], [Position]), is not exactly what we want. When
the two lists of records are properly joined together in a relational
sense, we expect a value type like [(Ship,Position)].

Depending on the update policy, there are many ways to im-
plement such a relational lens properly [8]. To keep the example
illustrative, an oversimplified version of such a lens is given here.
Its update policy is that it may add and delete records from both
lists, but it is safe only when the relation between the elements of
the lists is one to one.

joinLens :: (a → b → Bool)→ Lens ([a], [b]) [(a, b)]
joinLens by = MkLens {get = get , put = put }
where

get (lss, rss) = mapMaybe f lss
where f ls = (ls,) <$> find (by ls) rss

put (lss, rss) vs = (lms ′ ++ lvs, rms ′ ++ rvs)
where

(lvs, rvs) = unzip vs

pairLeft = map (λls → (ls,find (by ls) rss)) lss
pairRight

= map (λrs → (rs,find (flip by rs) lss)) rss

lms ′ = dropPaired pairLeft
rms ′ = dropPaired pairRight

dropPaired as = map fst (filter (isNothing ◦ snd) as)

Just like selectLens , this function is also polymorphic. It creates a
relational join by a predicate, the element types of the lists depend
on the argument types of the predicate. This time we create a
traditional lens as there is nothing to be parametrized here.

The implementation, in the get direction, takes the elements of
the left list and tries to find a connected record (the first such one)
from the right list using the predicate function. If there is no such
one, the record is skipped.

The put direction is non-obvious even in this simple case.
Briefly, we determine which elements from the original lists are
skipped by the join (lms ′ and rms ′). These give one part of the
modified input. The other part is coming from the modified output,
vs . It is unzipped to separate the elements of the left (lvs) and right
lists (rvs). For more details we refer to [8].

shipPositions :: PView
((Ships,ShipFilter), (Positions,PositionFilter))
ShipsT
[(Ship,Position)]

shipPositions = jointView ‘Project ‘ (joinLens by)
where

by s = (s name s ≡) ◦ p ship name

Any of these views can be used to read or update the shared data,
depending on the focus one needs. As they are interconnected,
updating through filteredShips for example, triggers notifications
for the other affected views, ships and shipPositions as well.

However, one must be aware that the accuracy of the notification
system depends on the focus value provided explicitly for the
interface functions. As an example, consider the f1 focus value:

f1 = ((Ships,SNameEQ "Queen"),
(Positions,WholeWorld))

Requesting notification for this focus of the shipPositions view
may result in many false notifications. According to the semantics

of the Product node, a notification is triggered if the data of the
ship “Queen” has been changed in the ship database or any data
has been changed in the position database (the WholeWorld focus
covers all the records). In this case one should use the f2 focus
value for improved accuracy:

f2 = ((Ships,SNameEQ "Queen"),
(Positions,PNameEQ "Queen"))

The accuracy of the notification system is also affected by the ac-
tual implementation of the used lenses. For example, in this section
we took a naive approach developing the lenses which is a hidden
source of inaccuracy. Let us consider again that we use the f1 fo-
cus value, this time to update the data (capacity and position) of the
ship “Queen”. Providing only records related to the ship “Queen”,
we expect that we trigger notifications for domains only which con-
tains that ship. The join lens works on the list of records read from
the underlying views using the explicit focus value. It means one
record from the ship database (the (Ships,SNameEQ "Queen")
focus value selects exactly one record) and all the records from the
position database (indicated by the (Positions,WholeWorld) fo-
cus value). The lens does a good job, it silently replaces the position
of the ship “Queen” in the list of position records, then delegates
the whole list to the underlying view, filteredPositions . The prob-
lem is that from the point of view of filteredPositions , the whole
database is changed, thus it triggers notifications for all the notifica-
tion requests indiscriminately. In the following section we develop
a new variant of our generic lenses to overcome this issue.

9. Revised second example
The source of the problem described in the previous section is that
the filtered views cannot take into account the implicit filtering
imposed by the join lens. The list of affected records can be easily
calculated in joinLens , but how make selectLens aware of this
information?

Previously, we calculated the list of affected records in the
put function of selectLens and generated the invalidation function
based on that. The idea is to calculate this change list in the higher
level views and pass it to selectLens as an argument. Thus the new
implementation works on a pair of lists instead of a single list:

selectLens :: (f → a → Bool)
→ ParametricLens f [a] ([a], [a])

selectLens pred = MkPLens {getF = get , putF = put }
where

get f ss = (filter (pred f) ss, [])

put f ss (vs, cs) = (m ′ ++ vs, inval)
where

m ′ = filter (¬ ◦ pred f) ss
inval f ′ = any (pred f ′) cs

The difference compared to the previous implementation is in the
inval function. Instead of calculating, we just use the given change
list. Applying it to the ships view we get the following:

filteredShips ′

:: ShipsView (Ships, [ShipFilter]) ([Ship], [Ship])
filteredShips ′ = ships ‘Focus‘ (selectLens shipPred)

This is far from being ideal as it still depends on the change list.
However, it can be easily calculated in one more step using an
additional generic lens:

calcChangeList :: Lens ([a], [a]) [a]
calcChangeList = MkLens {get = get , put = put }

where

get (ss, cs) = ss
put (ss,) vs = (vs, ss ++ vs)

It creates a change list just as selectedLens did previously: the
list of new records in addition to the list of replaced ones. The
filteredShips view has the same semantics now as previously:

filteredShips :: PView (Ships,ShipFilter) ShipsT [Ship]
filteredShips = filteredShips ′ ‘Project ‘ calcChangeList

If we create filteredPositions ′ the same way and put it together
with filteredShips ′ by means of the Product combinator we get
the following view:

jointView :: PView
((Ships, [ShipFilter]), (Positions, [PositionFilter]))
ShipsT
(([Ship], [Ship]), ([Position], [Position]))

jointView = filteredShips ′ ‘Product ‘ filteredPositions ′

Its type is rather lengthy, but it is an intermediate view only which is
not supposed to be exposed. We still have to modify the joinLens
function to calculate and push down a change list. Its type is as
follows:

joinLens :: (a → b → Bool)
→ Lens (([a], [a]), ([b], [b])) [(a, b)]

The actual implementation of this function is not included here,
mostly because it is rather long. The modifications are straightfor-
ward to develop by calcChangeList and the new selectLens im-
plementation, and it also provided in the online version.

In a final step, the new joinLens must be applied to the new
jointView view exactly the same way as previously. This gives
back the exact same read and update semantics, but radically im-
proves the accuracy of the notifications in certain cases.

10. Related Work
There are three main groups of works closely related to paramet-
ric views. These are bidirectional lenses, publish/subscribe sys-
tems (including their light-weight counterpart in the object ori-
ented world, the observer design pattern) and functional reactive
programming (FRP).

Bidirectional lenses
The first group of related work is bidirectional programming, the
so called lenses [12]. A lens is a bidirectional transformation that
maps a “concrete” data structure into a simplified “abstract view”
and, if the view is updated, maps the modified abstract view, to-
gether with the original concrete data, to a correspondingly modi-
fied concrete data. In recent years, many extensions (e.g. quotient
lenses [13]) and improvements are suggested to the original idea.
Most of the improvements would replace the original, state-based
approach, with a more efficient, edit-based one, which work with
descriptions of changes to structures, rather than with the structures
themselves [7, 8, 18, 35]. As for parametric views, supporting ob-
servation of specific changes in the “concrete” data by extended
lens definitions, is a novel idea.

Publish/subscribe systems
With systems based on the publish/subscribe interaction scheme
[11], subscribers register their interest in an event, or a pattern
of events, and are subsequently notified of events generated by
the publishers. There are three basic variants of publish/subscribe
schemes.

The earliest scheme was based on the notion of topics. Ob-
servers can subscribe to individual topics, which are identified by

keywords. A later extension enabled topics to be created in a hier-
archal manner, giving more expressive power to the event system.
Most systems also allow topic names to contain wildcards, thus en-
abling to publish and subscribe to several topics in the same time.
The most notable of these is TIBCO [32].

The content-based variant, e.g. Java Message Service [29], ex-
tends the expressiveness of the topic-based approach by introduc-
ing a subscription scheme based on the actual content of the events.
These systems usually offer a subscription language or enables the
subscribers to provide a predicate function to filter events at run-
time.

Finally, the latest approach, the type-based variant [10] replaces
the name based topic classification model by a scheme that filters
events according to their type. Subtyping can be used to achieve
hierarchical topic descriptions.

Parametric views use an approach that is a mixture of the type-
and content-based variants with additional modifications. Events
are typed and carry some type specific properties. The semantics
of the properties is described by the invalidation function during
the definition of the views. An instance of the invalidation func-
tion (based on the actual data) is generated by the update process
(the publisher) to filter events. In contrast, in content-based pub-
lish/subscribe systems, the predicate function is provided by the
subscriber. Another difference is that the whole event system is
connected, that is two events can be related in our system, even
if their type is different. The conversion of events of different types
is also described by the views using the predefined combinators.

Publish/subscribe systems are mostly used in inter-process com-
munication. In object oriented programming the observer design
pattern [15] is also used for notification purposes when one wants
to stay between the boundaries of an application. In the observer
pattern, an object, called the subject or observable, maintains a list
of observers, and notifies them automatically if its state changes,
usually by calling one of their methods.

In contrast to parametric lenses, the observer pattern does not
allow the observers to subscribe for a specific focus. Most imple-
mentations, however, enable the observable to pass an arbitrary pa-
rameter to the observers along with the change notifications. If this
parameter describes the nature of the change (the invalidation func-
tion in parametric lens terminology), the observer can use it to de-
cide whether it is interested in the actual notification or not. If the
observer classes are parametrized over the type of the value passed
to the observer (e.g. in the .NET implementation), this also can be
achieved in a type safe manner. This behavior is close to parametric
lenses, but in this case, the actual notification logic would be decen-
tralized, it should be scattered over all the observable and observer
classes, which is error prone to implement.

Functional reactive programming
The last group of related work is functional reactive program-
ming [9]. FRP is a programming paradigm oriented around time-
varying values, called behaviors, or signals, in a functional pro-
gramming setting. In FRP, the underlying execution model auto-
matically propagates changes, which makes it similar to our ap-
proach. In the original theory a time-varying value is pure, repre-
sented as a function of time, thus lenses are not applicable (the data
flow is one-way).

There is, however, a state-based approach, when using lenses
has a rationale. An example of these frameworks is Scala.React [25],
which also can be considered as a superior replacement of the ob-
server pattern. It can help with migrating the observer-based event
handling logic with a more declarative implementation.

In Scala.React there are two different kind of signals: variable
signals and expression signals. Expressions signals are restricted to
one-way data flow, but variable signals can be edited. This makes

it possible in Scala.React to apply lenses to variable signals and to
each other, creating a so called lens cluster [24]. This approach is
comparable to parametric views, even though the technical details
are very different as the Scala language imposes less restrictions
on the developer (e.g. lenses are classes, thus have addresses as
comparable identifiers).

Another functional reactive framework, Flapjax [28], is built
on JavaScript. Flapjax uses lenses, developed for bidirectional tree
transformations in [12], to define user interfaces to JavaScript. A
piece of the tree based HTML Document Object Model (DOM)
can be attached to some structured data model using these lenses.
A signal can be created by connecting an actual part of the DOM
(denoted by its DOM id) with an actual model object. The system
takes care of propagating the changes of the DOM to the models.
This can be considered as a special case of our solution (e.g. the
source of the shared data is restricted to the DOM) in an FRP
setting.

11. Conclusion and Future Work
We have developed parametric views to provide read/write access
to some shared data according to a parameter, the focus domain,
which describes which part of the shared data one is interested in,
wants to focus on. Parametric views are also observable, one can be
notified if some part of the underlying shared data is changed, and
compositional. They are built up using some combinators either
from parametric sources, which describe how to interface with the
actual data source in use, or from other parametric views with as-
sociated information. To enable observation, we have developed a
general extension to bidirectional lenses, called parametric lenses;
they are attached to parametric views by one of the predefined com-
binators. We have presented the executable semantics, a naive im-
plementation of our idea, and some basic examples in Haskell. We
also have developed a library in Clean that has been integrated into
the iTask system [31]; it is used to develop advanced prototypes for
the Dutch Coastguard.

Naturally, the progress we have made on parametric views/lenses
raises many further challenges. The current implementation is
naive. For a production environment, efficiency needs to be consid-
ered more carefully. Furthermore, as it is shown in Section 9, the
used lens also affect the performance of the system. We need fur-
ther research to identify the patterns in the development of lenses
which increases the accuracy of the notifications.

Currently, the most traditional state-based lens variant is used
in our system, but we also would like to experiment with edit-
based lenses [18]. The idea of using the edits easing the creation
of invalidation functions is promising, as edits also describe which
part of the data is changed.

Another area of further investigation is the design of additional
combinators. One direction to be explored is combining two views
by connecting the read value of one to the focus value of the other.
Although, we are having a reference implementation of such a
combinator, it is not clear yet what most practical type parameters
for this combinator are.

Finally, we need to investigate how the usage of parametric
lenses affects the performance of certain applications. It is obvious,
that using parametric lenses, we can reduce the number of status
updates in an application. However, the accuracy of the notification
system depends on the actual implementation of the used lenses.
Furthermore, the more accurate the system, the more computation
must be done on some data during the updates. We need a method-
ology to be able to find a balance between accuracy and computa-
tional complexity.

Acknowledgments
The authors would like to thank Peter Achten for his helpful sug-
gestions and assistance with this manuscript. We also thank the
anonymous reviewers for their careful reading of our manuscript
and their many insightful comments and suggestions.

References
[1] Generalized algebraic data types, Dec 2014. URL https://www.

haskell.org/ghc/docs/6.6/html/users_guide/gadt.html.

[2] Monad transformers, Dec 2014. URL http://book.
realworldhaskell.org/read/monad-transformers.html.

[3] The data.typeable package, Dec 2014. URL http://hackage.
haskell.org/package/base-4.7.0.1/docs/Data-Typeable.
html.

[4] The state monad, Dec 2014. URL https://www.haskell.org/
haskellwiki/State_Monad.

[5] The writer monad, Dec 2014. URL https://
hackage.haskell.org/package/mtl-2.0.1.0/docs/
Control-Monad-Writer-Lazy.html.

[6] F. Bancilhon and N. Spyratos. Update semantics of relational views.
ACM Trans. Database Syst., 6(4):557–575, Dec. 1981. ISSN 0362-
5915.

[7] D. M. Barbosa, J. Cretin, N. Foster, M. Greenberg, and B. C. Pierce.
Matching lenses: Alignment and view update. In Proceedings of the
15th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’10, pages 193–204, 2010. ISBN 978-1-60558-794-
3.

[8] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses:
A language for updatable views. In Proceedings of the Twenty-
fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’06, pages 338–347, 2006. ISBN 1-59593-
318-2.

[9] C. Elliott and P. Hudak. Functional reactive animation. In Interna-
tional Conference on Functional Programming, 1997. URL http:
//conal.net/papers/icfp97/.

[10] P. T. Eugster, R. Guerraoui, and C. H. Damm. On objects and events.
SIGPLAN Not., 36(11):254–269, Oct. 2001. ISSN 0362-1340.

[11] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys, 35(2):
114–131, June 2003. ISSN 0360-0300.

[12] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations: A lin-
guistic approach to the view-update problem. ACM TPL, 29(3), May
2007. ISSN 0164-0925.

[13] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient lenses. In
Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’08, pages 383–396, 2008. ISBN 978-
1-59593-919-7.

[14] J. N. Foster, B. C. Pierce, and S. Zdancewic. Updatable security views.
In Proceedings of the 22nd IEEE Computer Security Foundations Sym-
posium, CSF 2009, Port Jefferson, New York, USA, July 8-10, 2009,
pages 60–74, 2009. . URL http://doi.ieeecomputersociety.
org/10.1109/CSF.2009.25.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995. ISBN 0-
201-63361-2.

[16] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics
of consistent views. ACM Trans. Database Syst., 13(4):486–524, Oct.
1988. ISSN 0362-5915.

[17] M. Hofmann, B. Pierce, and D. Wagner. Symmetric lenses. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11, pages 371–384,
2011. ISBN 978-1-4503-0490-0.

[18] M. Hofmann, B. Pierce, and D. Wagner. Edit lenses. In Proceedings
of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’12, pages 495–508, 2012. ISBN
978-1-4503-1083-3.

[19] M. P. Jones. Functional programming with overloading and higher-
order polymorphism. In Advanced Functional Programming, First
International Spring School on Advanced Functional Programming
Techniques-Tutorial Text, pages 97–136, London, UK, UK, 1995.
Springer-Verlag. ISBN 3-540-59451-5. URL http://dl.acm.org/
citation.cfm?id=647698.734150.

[20] E. Kmett. The lens package, Dec 2014. URL https://hackage.
haskell.org/package/lens.

[21] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Trans. Database Syst., 6(2):213–226, June 1981. ISSN
0362-5915.

[22] B. Lijnse, J. Jansen, R. Nanne, and R. Plasmeijer. Capturing the
netherlands coast guard’s sar workflow with itasks. In D. Mendonca
and J. Dugdale, editors, Proceedings of the 8th’11, Lisbon, Portugal,
May 2011.

[23] B. Lykah. Groundhog, Dec 2014. URL http://hackage.haskell.
org/package/groundhog.

[24] I. Maier. Reactive lenses. Oct 2013. URL http://soft.vub.ac.
be/REM13/papers/rem20130_submission_10.pdf.

[25] I. Maier and M. Odersky. Deprecating the Observer Pattern with
Scala.react. Technical report, 2012.

[26] S. Marlow and S. Peyton Jones. The Glasgow Haskell Compiler. In
The Architecture of Open Source Applications, Volume 2. Lulu, 2012.
URL http://www.aosabook.org/en/ghc.html.

[27] C. Mcbride and R. Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, Jan. 2008. ISSN 0956-7968.

[28] L. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi. Flapjax: A programming lan-
guage for ajax applications. In Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA) 2009, 2009.

[29] I. S. Microsystems. Java message service, version 1.0.2 (jms spec-
ification). Technical report, Sun Microsystems, Inc., 1998. URL
http://java.sun.com/products/jms.

[30] S. L. Peyton Jones. The Implementation of Functional Program-
ming Languages (Prentice-Hall International Series in Computer Sci-
ence). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987. ISBN
013453333X.

[31] R. Plasmeijer, B. Lijnse, S. Michels, P. Achten, and P. Koopman. Task-
oriented programming in a pure functional language. In Proceedings
of the 14th Symposium on Principles and Practice of Declarative
Programming, PPDP ’12, pages 195–206, 2012. ISBN 978-1-4503-
1522-7.

[32] TIBCO. TIB/Rendezvous. White paper, TIBCO, Palo Alto, CA, 1999.
[33] T. van Laarhoven. Cps based functional references, July

19 2009. URL http://www.twanvl.nl/blog/haskell/
cps-functional-references.

[34] P. Wadler. Monads for functional programming. In Advanced
Functional Programming, First International Spring School on Ad-
vanced Functional Programming Techniques-Tutorial Text, pages 24–
52, 1995. ISBN 3-540-59451-5.

[35] M. Wang, J. Gibbons, and N. Wu. Incremental updates for efficient
bidirectional transformations. In Proceedings of the 16th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
’11, pages 392–403, 2011. ISBN 978-1-4503-0865-6.

