
Editlets: type-based, client-side editors for iTasks

László Domoszlai1,2 Bas Lijnse1 Rinus Plasmeijer1
1Radboud University Nijmegen, Netherlands, ICIS, MBSD

2Eötvös Loránd University, Budapest, Hungary, Software Technology Department
l.domoszlai@cs.ru.nl, b.lijnse@cs.ru.nl, rinus@cs.ru.nl

Abstract
The iTask framework enables the construction of distributed sys-
tems where users work together on the internet. It offers a domain
specific language for defining applications, embedded in the lazy
functional language Clean. From the mere declarative specification
of the tasks to do and their interconnection, a multi-user web appli-
cation is generated which can coordinate the work thus described.
User interfaces are generated automatically which is realized by us-
ing type-driven generic functions. Although this way of generating
user interfaces entails a number of benefits for the programmer, it
suffers from the lack of possibility to create custom user interface
building blocks. In a precursory work we proposed tasklets for the
development of custom, interactive web components. However, ex-
perimenting with real-world applications indicated that they lack
some fundamental properties limiting their usability; these are the
tight integration with the type-driven user interface generation, and
the capability of working with shared data. In this paper, we in-
troduce editlets to overcome these limitations. In addition, editlets
also provide a general way to communicate changes instead of ex-
changing the whole data to reduce communication overhead.

Categories and Subject Descriptors D.1.1, H.5.2 [Applicative
(Functional) Programming, Methodology and Techniques]: User
interface management systems (UIMS)

Keywords iTasks, editlet, change based synchronization

1. Introduction
Task Oriented Programming [25, 32] (TOP) is a paradigm for
designing multi-user, distributed web-applications. The iTask sys-
tem [31], or iTasks, is a TOP framework that offers a domain spe-
cific language which is shallowly embedded in the strongly typed,
lazy, purely functional programming language Clean [29, 38].

In the TOP paradigm, the unit of application logic is a task.
Tasks are descriptions of interactive persistent units of work that
maintain a typed value. When a task is executed, it has a per-
sistent value, which may change over time reflecting the current
state of the work taken place. This task value can be observed by
other tasks. In iTasks, complex multi-user interactions can be pro-
grammed in a declarative style just by defining the work that has to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL ’14, October 1–3, 2014, Boston, MA, US.
Copyright c© 2014 ACM 978-1-4503-3284-2/14/10. . . $15.00.
http://dx.doi.org/10.1145/2746325.2746331

be accomplished. The definition is given on a very high level of ab-
straction and does not require the programmer to provide any user
interface definition. Merely by defining the workflow of user inter-
action, a complete multi-user web application is generated, all the
details e.g. the generation of web user interface, client-server com-
munication, state management etc. are automatically taken care of
by the framework itself.

The iTask system uses generic programming [5, 18] and a hy-
brid static-dynamic type system [28, 41] to generate the user in-
terface. From the programmer’s perspective, it is achieved in two
levels. At the most basic level, the iTask engine can be asked to
generate a graphical user interface (GUI) for any conceivable first
order model type. iTasks uses a predefined set of primitive user in-
terface elements to generate the GUI, a client-side editor, for the
given type, then dynamically creates an associated primitive task.
On the higher level, additional user interface elements are gener-
ated automatically as tasks are combined together. These elements
reflect the actual combinators in use and express the “flow” of the
application.

Developing web applications in such a way is straightforward in
the sense that programmers are liberated from these cumbersome
and error-prone jobs, such that they can concentrate on the essence
of the application. The iTask system makes it very easy to develop
interactive multi-user applications. The down-side is that one has
only limited control over the customization of the generated user
interface. In real-world applications, it is often necessary to develop
custom user interface elements to achieve special functionality.

To overcome this limitation, in previous work we introduced
tasklets [14], a special primitive task type, for the development
of custom, interactive web components. Tasklets are written in
Clean and executed in a web browser using a Clean to JavaScript
compilation technique [15]. In the browser, they have unlimited
access to browser resources through some library functions while
on the server they behave like ordinary iTasks tasks.

Using tasklets, we have successfully developed many interac-
tive components for a wide range of applications, but we also ex-
perienced certain limitations of the technology:

1. Tasklets cannot work with shared data. As an example, it is not
possible to create an interactive map, and enable multiple users
to make concurrent modifications to that (e.g. add marks).

2. Tasklets are not compatible with the generic, type-driven user
interface generation. User interfaces can be generated automati-
cally for any first order type, in a compositional manner. For ex-
ample, the system knows, given a user interface for type t, how
to construct a user interface for a container type t’ in which
type t includes, such as a list of t or a tree of t. However, a
user interface created for a tasklet belongs to a particular task,
not to a type, and can therefore not be applied in the generic
user interface generation.

3. Tasklets have a simple communication interface based on the
exchange of the whole underlying data, which has a high asso-
ciated communication cost.

Given the experience we obtained with developing real-world
applications, we revised our first approach of defining custom in-
teractive components. The new component type is called editlets.
Editlets solve all the aforementioned limitations while preserving
compatibility: in the most basic use cases they give back the func-
tionality of tasklets.

Editlets also have the property that the client-server commu-
nication is done in edits, which means that the value of the edit-
let is communicated through changes, that is incremental updates,
instead of exchanging the whole value at every update. In certain
cases this drastically reduces the associated communication cost
(consider a source code editor component as an example).

In this paper we show how editlets can be defined, how they
work and interact with the other part of the iTask system. This is
done in a number of steps:

1. We extend iTasks with editlets. An editlet has an associated
value type and consists of a description of the behavior of the
component on the client-side, and the logic of creating and
applying edits from and to its current value.

2. We develop a simple, but still realistic example of a drawing
application, where multiple people can work on the same shared
image, to give a taste of editlets.

3. We explain the technical background of editlets along with
additional remarks on how they fit in the iTasks architecture.

The remainder of this paper is structured as follows: to set the
context, we start with a short introduction of the iTask framework
in Section 2. In Section 3 an overview of our old approach, tasklets,
is given, where we also identify some general shortcomings of the
architecture. Based on these shortcomings, we define new require-
ments in Section 4. The new editlet architecture is introduced in
Section 5, then a small, but illustrative example is developed in Sec-
tion 6. In Section 7 we briefly discuss the design of the architecture
of the client-side execution used by editlets. After a discussion of
related work in Section 8, we conclude in Section 9.

The iTask framework has been created in Clean. A concise
overview of the syntactical differences with Haskell is in [4]. We as-
sume the reader is familiar with the concept of type-driven generic
programming and uniqueness typing [7].

2. Introduction to iTasks
Task Oriented Programming (TOP) is a paradigm that is designed
to construct multi-user, distributed web-applications. The iTask
system is a TOP framework that offers four core concepts for
software developers:

1. Tasks which are abstractions of the work that needs to be per-
formed by (teams of) human(s) and software components. A
task is a value of parameterized type (Task a). The type param-
eter amodels the task value the task is currently processing. The
task value may change over time while the task is being worked
on (see [32]). The current value can be inspected by other tasks.

2. Shared data sources (SDS) which are abstractions of informa-
tion that is shared between tasks. An SDS is a value of parame-
terized type (ReadWriteShared r w). The type parameters r
and w model the read and write values. The shared data sources
enable safe concurrent read/write access for some shared data,
and offer change notifications (i.e. a task which depends on a
particular SDS will be notified when the SDS has been changed
by some other task).

:: Task a / / Task is an opaque, parameterized type constructor

/ / Sequential composition
(>>=) infixl 1 :: (Task a) (a → Task b)

→ Task b | iTask a & iTask b

/ / Parallel composition
(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a

/ / Assigning a task to a user
:: User:==String
(@:) infix 3 :: User (Task a) → Task a | iTask a

/ / Shared Data Sources
:: ReadWriteShared r w
withShared :: b ((ReadWriteShared b b) → Task a)

→ Task a | iTask a & iTask b

/ / User interaction
enterInformation :: String → Task m | iTask m
updateInformation :: String m → Task m | iTask m
viewInformation :: String m → Task m | iTask m

/ / User interaction using shared data
updateSharedInformation :: String (ReadWriteShared r w)

→ Task w | iTask r & iTask w
viewSharedInformation :: String (ReadWriteShared r w)

→ Task r | iTask r & iTask w

Figure 1. Combinators and primitive tasks used in the paper

3. Combinator functions that compose tasks and SDSs into more
complex tasks and SDSs.

4. Generic interaction with the users. A TOP framework gener-
ates user interfaces generically for any type of data used by
tasks. This means that it is not necessary to design a user in-
terface and program event handling just to enter or view some
information.

For programming convenience, a large set of primitive tasks, task
combinators, and types are predefined in the iTask library on top
of these core concepts. Figure 1 displays a fragment of these tasks,
types and combinators, that we use in this paper.

Most type definitions of the iTasks combinators contain a con-
text restriction at the end of their type signature, e.g. | iTask
m, defining a restriction on type variable m. It is similar to con-
text restrictions on overloading as can be found e.g. in Haskell. In
Clean, context restrictions not only may refer to overloaded func-
tions, it may also refer to generic functions. The context restriction
| iTask m means, that m can be of arbitrary type, provided that a
class of generic functions, necessary for the iTasks run-time sys-
tem, have instances for type m. In contrast to the overloaded use,
the programmer does not need to define these instances. The Clean
compiler can automatically derive instances for generic functions
for any conceivable first order model type.

In this paper we only use a few simple combinator functions
for sequential and parallel compositions. Task f >>= s, created
by the monadic >>= combinator, first performs task f, then the
value produced by f can be used by task s to compute any new
task expression. The -||- parallel combinator groups two tasks of
the same type in parallel and returns the result of the task that is
completed first. With the assign operator @: a task to work on can
be assigned to a specific user. It can be seen as a special case of a
parallel task with the property that the task has to be performed by
the indicated user.

Many functions are defined on Shared Data Sources, e.g. read-
ing, writing, and observing. In this paper we only make use of the

Figure 2. GUIs generated for values of type Int.

withShared function. It creates a shared data source in memory
with a given initial value and a limited scope. The shared data can
only be accessed by the task(s) defined in the continuation function.

In iTasks there are a family of primitive tasks for generating user
interface for first order types. The system uses generic program-
ming and a hybrid static-dynamic type system to be able to achieve
this functionality. Some of these tasks are viewInformation,
enterInformation and updateInformation to display, and to
allow the user to enter or edit some data, respectively. The first
argument of these functions is a brief description of what the end-
user is expected to do. Commonly, these primitive tasks also have
a counterpart that work with shared data instead of private, local
data. In this paper we will use updateSharedInformation and
viewSharedInformation.

To give a quick glimpse of iTasks, we present two very simple
examples. In the first example a user is asked to enter two numbers
in a sequence, after which their sum is displayed. One can see in the
code how information produced by one task is passed to the next
one in a monadic style. The corresponding generated user interfaces
for doing the interaction are shown in Figure 2. In this example,
GUIs are generated for type Int.

calculateSum :: Task Int
calculateSum
= enterInformation "Enter a number"
>>=λnum1→

enterInformation "Enter another number"
>>=λnum2→

viewInformation "The sum of these number is:" (num1 + num2)

In the following example we define the task updateAndView de-
livering a value of arbitrary type a. It starts two tasks in parallel.
One is assigned to user1, the other one to user2. Both tasks com-
municate via a newly created shared data source with initial value
initialValue. For user1 a user interface is created which en-
ables her to update the data source, while user2 is offered a view
to follow the changes made. When a shared value is changed, all
tasks that rely on it are automatically informed and refreshed.

updateAndView :: User User a → Task a | iTask a
updateAndView user1 user2 initialValue
= withShared initialValue

(λshared→ update user1 shared
-||-
view user2 shared)

update u sh= u @: updateSharedInformation "enter information" sh
view u sh= u @: viewSharedInformation "view information" sh

A task like updateAndView is very generally applicable, it can be
used for any first order type for which the iTask class of generic
functions have been generated. The user interfaces that will be gen-
erated by the generic functions depend on the concrete type the task
is applied with. In the task twoWorkers below, updateAndView
is applied to let Alice and Bob work together, producing a value
of type [Person]. Using a derive statement, an instance for all

Figure 3. Generated GUI for entering values of type [Person].

generic iTasks functions for this type is created by the compiler. Al-
ice is offered an interface to create a list of Persons (see Figure 3),
and the changes she made can “real-time” be observed by Bob.

:: Person=
{ name :: String
, placeOfBirth :: String
, dateOfBirth :: Maybe Date
}

derive class iTask Person

twoWorkers :: Task [Person]
twoWorkers= updateAndView "Alice" "Bob" []

Although it is nice that user interfaces can be generated for any
first order type, one would like to have an easy way to do something
different than the default behaviour and be able to let arbitrary work
be done on the client using the latest facilities offered in modern
browsers.

Furthermore, in general, an arbitrary number of tasks, varying
over time, may view or update shared data. This can of course lead
to conflicts when multiple people want to update the same data at
the same time. The default behaviour of the system is to ignore a
conflicting update. The update is lost and the corresponding task
is refreshed showing the most recent information known. Although
it is possible to redefine this default behaviour for a specific data
source, when rich clients are being used one has to be able to define
how to recover from a failing update on the client.

3. The first approach: tasklets
In iTasks, because the user interface is generated and handled auto-
matically, one has only limited control over its customization. Al-
though, for most of the iTasks applications, this is acceptable, our
experiment with real-world applications, e.g. the implementation of
the Netherlands Coast Guard’s Search and Rescue (SAR) protocol
[26, 27], indicated that even if the functional web design is satis-
factory, custom building blocks may be required for the purpose of
user-friendliness.

To overcome this shortcoming, we presented an extension for
the iTask system which enables the development of such compo-
nents, the so called tasklets [14]. Tasklets are seamlessly integrated
into iTasks to preserve the elegance of functional specification by
hiding the behavior behind the interface of a task.

Tasklets are developed in a single-language (i.e. Clean), declar-
ative manner and in accordance with the model-view-controller
user interface design (MVC) [23]. MVC decouples the applica-
tion logic (the controller), the application data (the model) and
the presentation data (the view) to increase flexibility and reuse.
Technically speaking, tasklets are embedded applications whose
behavior is encoded by means of event handler functions. The
event handlers are compiled to JavaScript so that they can be ex-
ecuted in the browser. They have unrestricted access to client-side
resources. Using browser resources the tasklet can create custom

appearance and exploit functionality available only in the browser
(e.g. HTML5 GeoLocation API). It utilizes the event-driven archi-
tecture to achieve interactive behavior. With this extension, iTasks
gains similar characteristics to multi-tier programming languages
like Links [9] or Hop [33, 34], in the sense that the same language
is used to specify code residing on multiple locations or tiers, such
as the client and the server.

A tasklet consists of the definition of a client-side application
which has a state of type state, and a function which tells how to
extract the result of the tasklet of type value from the state:

:: Tasklet value= ∃ state:
{ genUI :: *World→ *(TaskletHTML state, *World)
, resultFunc :: state→ value
}

The first part, the definition of the client-side application is gener-
ated by the genUI non-pure function (the uniquely attributed type
*World allows access to the external environment), while the tran-
sition from state to value is given by resultFunc. Finally, a
tasklet must be turned into a primitive task to make it executable
by iTasks:

mkTask :: (Tasklet value) → Task value

The life cycle of a tasklet is the following: it starts when the value
of the wrapper task is requested. First, genUI is executed on the
server to provide the user interface of the tasklet. Then, the def-
inition of the user interface is on the fly compiled to JavaScript
and shipped to the browser. In the browser, the application is exe-
cuted in a tasklet container. As it runs, when its state is changed,
resultFunc is called to create a new task value that is sent to the
server immediately. The life cycle of the tasklet is terminated by
the framework when the task value is finally taken by another task.

Tasklets are backed by a JavaScript compilation technique in-
tegrated with the Clean compiler. During the compilation of an
iTasks application, besides the server executable running in native
code, an intermediate representation of the same application in the
SAPL [21] language, is also created. This intermediate language is
designed to contain only the essential minimum of language fea-
tures of a lazy, functional language like Clean or Haskell, while
preserving the semantics. Furthermore, its syntax is carefully con-
structed to be easy to handle at source code level. These features
enable us to perform fast source code level linking based on any
initial expression. The actual JavaScript compilation is done dur-
ing run-time in a demand driven way: given an expression the de-
pending SAPL code is collected and then compiled to JavaScript
on the fly. This technique has the advantage of reducing the size
of the generated code to the essential minimum. The compilation
technique is explained in more detail in Section 7.

The tasklet architecture enables us not only to create custom
interactive components, but it also allows us to execute arbitrary
tasks on the client. This means that we can dynamically choose
where a task is to be executed, on the server or on the client [14].
Tasklets are just perfect for the latter purpose, but further experi-
ments revealed that they also have certain limitations concerning
the creation of interactive components:

• In iTasks the user interfaces are generated in a generic, type-
driven way. The iTask system can be asked to generate a user
interface for a value of type [a] for example, where a is any
first order type. However, tasklets are not integrated with this
type-driven approach. The main problem is that the user in-
terface generated for the type (Tasklet a), should produce
a value of type a instead of (Tasklet a). Thus, one should
rather be able to tell the system that for a given type a, instead
of creating the generic user interface, use a specific tasklet in-
stance of type (Tasklet a) for customization.

• Tasklets cannot work with shared data. As an example, it is
not possible to create an interactive map, and enable multiple
users to make concurrent modifications to that (e.g. add marks).
This is a serious limitation as working with shared data sources
to achieve collaborative work is one of the main principles of
iTasks.
• In certain applications tasklets have a huge associated commu-

nication overhead. An example of this is a tasklet which imple-
ments a syntax highlighted source code editor component. Ex-
changing the whole source code between the client and server
every time when a part of it is changed has a big negative impact
on the performance of the whole application.

We concluded that the first two of these limitations are bound to
the way tasklets are integrated into iTasks, while the last one is a
general limitation of the tasklet architecture. In the light of these
limitations, we decided to refine the requirements and create a new
component type to implement them.

4. Requirements
This is the extended list of requirements for our new component
type, called editlet, derived from our previous experiments with
tasklets:

1. It should be general enough that one can develop with it arbi-
trary browser applications. That basically means that editlets
should have unlimited access to browser resources.

2. It should be developed in the single language Clean, no matter
the platform it will run on.

3. It should be integrated with the type-driven approach used in
iTasks to generate the user interface. An editlet should be reg-
istered in iTasks to be associated with a given type, such that it
can be used by the system to replace the generic user interface.
In this way, the user interfaces of the container types could be
generated generically, while their elements may be customized
with an editlet.

4. It should be able to work with shared data.

5. It should be able to detect and resolve conflict situations when
working on shared data.

6. One should be able to develop such an editlet in such a way that
one can minimize the communication overhead of the given ed-
itlet. We also require that the communication overhead related
to the architecture of editlets should be as optimal as possible
(e.g. the amount of the JavaScript code sent to the browser).

7. Finally, as these requirements indicate additional steps in the
building process, e.g. compiling to JavaScript, linking, etc., we
want these steps to be fully integrated with the Clean toolchain,
and therefore, to be completely transparent (c.q. invisible) for
the developer and for the end users.

These requirements fall into three different groups. Requirements
1,2,7 put constraints on the definition of the client application and
are basically already satisfied by tasklets. Requirements 3,4 impose
restrictions on the way editlets are integrated into iTasks. Finally,
requirements 5 and 6 affect the design of the communication inter-
face.

In the next section we introduce our revised approach, and
present how they meet these requirements.

5. Introduction to editlets
On an abstract level, editlets consist of three parts: (1) the type of
the value the editlet produces, (2) a client-side application which

:: Editlet value= ∃ state edit:
{ genUI :: (*World→ *(ComponentHTML edit state, *World))
, appEditClt :: edit state *JSWorld→ *(state, *JSWorld)
, genEditSrv :: value value→ Maybe edit
, appEditSrv :: edit value→ value
}

Figure 4. Editlet Interface Definition

is a stateful, event-driven application written in a single-language
manner in Clean, and (3) a data synchronization interface which
describes how to convert the state of the client application to the
value of the editlet via edits and vice-versa.

On a more technical level, editlets basically consist of a set of
functions which manipulate values of three types. These are the
type of the value that the editlet is supposed to process on the
server, the type of the state which is maintained by the client
application, and, what is new compared to tasklets, the type of
the data which is used for the client-server communication, dubbed
edit.

5.1 The Editlet Interface
Figure 4 shows the type definition of the editlet interface. Editlets
are defined by the means of the (Editlet value) record type,
where the type parameter is the aforementioned value type. The
other two types, the state of the client application and the edit
type, are of no concern for a programmer applying an editlet, and
therefore hidden via existential quantification.

In the editlet interface one has to define four Clean functions:
genUI which generates the application to run on the client, and the
remaining to handle edits: appEditClt is executed on the client,
while genEditSrv and appEditSrv run on the server. Client func-
tions potentially alter the *JSWorld environment. The server func-
tion has access to the ‘regular’ *World environment of any side-
effectfull program. The access to the *World enables the genUI
function to do some IO during the initialization of the client appli-
cation, e.g. for the purpose of templating. The *JSWorld environ-
ment is also used by the event handler functions to interface with
the JavaScript foreign function interface explained in Section 6.2.

5.2 The Client Side Application
The genUI function produces the definition of the application to
run on the client which is of type (ComponentHTML edit state)
(see Figure 5). It is an event driven application which has an
internal state of type state. The application basically consists of
some HTML code that will be generated by Clean functions and a
list of event handlers to handle the interaction with the end-user.

The actual user interface (html field) can be given by any data
structure provided that it has an instance of the function class
toHtml. In this paper we will use an overly simplified ADT to pro-
vide HTML definitions. In reality, one probably would like a more
sophisticated way to have full, low-level control over the definition
of HTML elements. This can be done in an abstract, monadic way
like in Wash [37] or by an XML like domain specific language sim-
ilar to that of Hop [34]. Furthermore, as the genUI function of the
editlets is non-pure, it enables us to utilize some template mech-
anism similar to e.g. Yesod [35] or Snap [8]. However, providing
any particular tool here is beyond the scope of this paper.

The run-time behavior of an editlet is encoded in a list of event
handler functions given in the eventHandlers field. It is also
possible to create and attach event handlers dynamically, but this
facility is not important for the explanation. Event handlers are
defined using the (ComponentEvent edit state) type. Its only
data constructor has three arguments: the identifier of an HTML

:: ComponentHTML edit state=
{ html :: HtmlDef
, eventHandlers :: [ComponentEvent edit state]
}

:: HtmlDef= ∃a: HtmlDef a & toHtml a

:: ComponentEvent edit state
= ComponentEvent HtmlElementId HtmlEventName

(ComponentEventHandlerFunc edit state)

:: HtmlElementId:==String
:: HtmlEventName:==String

:: ComponentEventHandlerFunc edit state
:== (JSObj state *JSWorld→

*(state, ComponentEdit edit state, *JSWorld))

:: ComponentEdit edit state
= Edit edit (Conflict state *JSWorld→

*(state, ComponentEdit edit state, *JSWorld))
| NoEdit

:: Conflict:==Bool

Figure 5. The ComponentHTML type

element, the name of the event and the event handler function
itself. During the instantiation of the editlet on the client, the event
handler function is attached to the given HTML element to catch
events of the given name.

The event handler functions work on the JavaScript event ob-
ject (a JSObj typed value in Clean) and the current internal state
of the editlet. They can change the state by returning a new one,
and they can also change the value associated with the editlet by
returning an edit, wrapped in a value of type (ComponentEdit
edit state) (see Section 5.3). The event handlers also have ac-
cess to the browser resources, e.g. HTML Document Object Model
(DOM), to maintain their appearance for example, which is done
through a foreign function interface (FFI).

From the point of event handlers, manipulating browser re-
sources is a non-pure behavior. Therefore, FFI functions can be
used as IO access is done in Clean, through uniquely attributed
types. That is what the unique *JSWorld type is used for, in a sim-
ilar way as the unique *World type is used on the server. Introduc-
ing a new type to have IO on the client has the advantage that it
reflects for different purposes of client and server side code. The
server code can access all resources of the server computer, like the
file system, not available on the client; at the same time, the client
code has external access to a resource accessible only on the client.

5.3 Synchronizing Clients and Server
The synchronization is based on the exchange of edit typed val-
ues, edits, between the clients and the server. The architecture
is very similar to master/slave replication, where the server side
shared data takes the role of the master, while the editlet instances
in the browsers take the role of slave replicas. In such an archi-
tecture, updates are directly committed to the master to avoid dis-
tributed synchronization issues.

When a client wants to inform the server that something is
changed which might have consequences for the value maintained
by the server, it generates an edit which is sent to the server. The
server applies the edit to its value, and if this value is shared, the
same edit is distributed to the other tasks that share this value, in
particular the editlet clients who depend on it. It sounds straightfor-

ward, but there are two serious issues we have to deal with in such
a situation:

• First of all, the edit generated by the client, may no longer
be valid and therefore cannot be used to calculate the new
server value. This can happen if the value stored at the server
is shared and the edit is created against a different (old) version
of the underlying data. In the meantime the shared data might
be changed by some other application, or some other editlet
instance. Hence, one can have an update conflict, and editlets
must be able to resolve this.
• Because update conflicts can happen on the server, the clients

should commit updates in a synchronous manner to be sure
that the update went through (and to try to resolve the conflict
otherwise). However, there can be a significant network latency
between the clients and the server and the lag could make the
component highly unresponsive.

The first issue is solved by a standard technique of using a version
attribute. The server side shared data has a version number which
is increased every time the data is changed. When the server sends
an edit to a client, it goes along with the current version of the
shared data. Later on as the client generates edits, they are sent to
the server along with this locally stored version number, so it can be
compared with the actual version of the shared data on the server.
If the numbers differ, a conflict is detected.

To solve the second issue we decided to use optimistic concur-
rency control [24]. Instead of sending the edits to the server in a
synchronous manner, it is sent asynchronously and it is assumed
that there will be no conflict. If, however, a conflict situation hap-
pens, the client is informed by a callback mechanism. In this way
one can either roll back the change, or try again by sending a new
edit to resolve the conflict.

In the editlet architecture, client-side edits are generated by the
event handlers by means of the (ComponentEdit edit state)
type (see Figure 5). An edit is provided along with a continuation
function which is executed when this edit is accepted or rejected.
In the latter case the first argument of the continuation function is
set to True to indicate conflict.

The edits sent by the client to the server are applied to the
server side value by the appEditSrv function that is used to
calculate the new value. This function is, in contrast to its client-
side counterpart, pure, as the only responsibility of the server is to
hold pure data of type value.

In certain cases the server makes use of the genEditSrv func-
tion which is also defined in the editlet interface. It is used to find
out what the difference is between an old and new value that is just
calculated. This function is only used when the shared data is not
changed by an editlet, but some other type of task or application.
Assume e.g. that the shared data is stored in a shared file which is
overwritten by someone else. In such a case there is no edit avail-
able to be distributed to the clients, it must be generated.

When the server has deduced that clients need to be informed
about its changed value, it sends the corresponding edit to the client
which calculates the consequences for its local state by applying the
appEditClt function as defined in the editlet interface. It may not
only cause a change to the state of the editlet. As it is non-pure, it
can adjust its appearance according the received data as well.

To illustrate the role of these functions better, consider the
following use case:

1. User interaction on the client triggers the execution of one of the
event handlers of the editlet. New data is generated and an edit
is created, a value of type (ComponentEdit edit state).
The edit is sent to the server to synchronize with the server
value. The logic of saving the new data in the client state (or

roll it back) is encoded in the continuation function which is
attached to the edit.

2. The edit, along with the local version number of the shared data,
is sent to the server.

3. The server compares the version numbers. If they are the same,
the edit is applied by the appEditSrv function, the version
number is increased, a notification is sent to the client and the
edit is distributed to the other instances of the editlet. If the
version numbers differ, only a notification is sent to the client
to be informed about the conflict.

4. At the client who transmitted the edit, the continuation function
is executed to permanently commit or roll back the changes. As
a reaction to a conflict, it can decide to send a new edit and the
workflow continues with Step 2.

5. At all the other clients, the edit sent by the server is applied by
the appEditClt function.

The architecture guarantees that the edits and the conflict/success
notifications are delivered to the clients in that order as they ap-
pear on the server. Based on this guarantee, it is assumed that the
appEditClt and appEditSrv functions never fail. Working with
version numbers and edits furthermore has an advantage that the
synchronization between clients and server can be achieved with a
minimal amount of communication.

5.4 Integrate with iTasks
Finally, iTasks must be made aware of the editlet. For this, one has
to overwrite the default UI rendering logic of iTasks by providing
an explicit instance of a generic function for the value type of the
editlet. Section 6.1 demonstrates how to do that in practice.

6. Editlets by example
In the previous section we sketched out the big picture of the editlet
architecture; in this section we show how it works in detail by
developing a small, but illustrative example, where users can work
together to draw an image.

workTogether :: User User a → Task a | iTask a
workTogether user1 user2 initialValue
= withShared initialValue

(λshared→ update user1 shared
-||-
update user2 shared)

In this example we also want to explain how update conflicts are
being handled. The general applicable task workTogether we use
here is a variant of the updateAndView task as introduced in
Section 2, where now both workers work on and update the same
shared data such that update conflicts may arise.

:: Drawing= Drawing [Shape]

:: Shape= Line Color Int Int Int Int
| Rect Color Filled Int Int Int Int
| Circle Color Filled Int Int Int Int

:: Color= Yellow | Red | Green | Blue | Black
:: Filled:==Bool

drawingExample :: Task Drawing
drawingExample= workTogether "Alice" "Bob" []

Now we are going to apply this general applicable task to a concrete
type in a drawingExample where two workers, Alice and Bob,
need to work together to produce a drawing of type Drawing. A
drawing is simple and just consists of a list of shapes of lines,
rectangles, and circles.

The drawingExample task can be executed as is, but would
offer an interface to Alice and Bob for editing a list of shapes,
similar to the list of persons interface we showed in Section 2. It
would work and ensure that Alice and Bob can only create type
correct drawing values, but our friends would certainly not be very
happy with the look of the generated interface. We may assume that
instead they would prefer to make drawings using some dedicated
drawing application to produce drawings in a natural way. The
behaviour should be such that whenever Alice draws something,
Bob would see what has been drawn, and the other way around.
When they are both drawing at the same time, we need to be able
to handle both their contributions without upsetting them.

Changing the visualisation furthermore does not have any other
consequences for the tasks being defined. The underlying technol-
ogy remains completely hidden when type Drawing is used. Yet we
want to obtain a nice drawing tool in the browser for free whenever
a value of type Drawing is being used by some task. What does the
iTask system developer have to do to make this possible?

6.1 Specialization
First, one has to overwrite the default GUI rendering for type
Drawing of the iTask system and tell it to use an editlet for dealing
with Drawings instead.

gEditor{| Drawing |} = withEditlet painterEditlet

painterEditlet :: Editlet Drawing
painterEditlet
= { genUI =λworld→ (painterGUI, world)

, appEditClt= updateClient
, genEditSrv= calculateEditsServer
, appEditSrv= updateServer
}

This can be realized by defining an explicit instance of the generic
gEditor function for type Drawing. Next we have to define all
the components of the editlet record: the generator of the client-
side painter application painterGUI (see Section 6.3) and the
three functions (updateClient, calculateEditsServer, and
updateServer) to handle the synchronization between the clients
and the server (see Section 6.4).

6.2 The Foreign Function Interface to JavaScript
Before we can explain how the painting application can be defined,
we need to explain how the FFI (Foreign Function Interface) to
JavaScript and to the DOM of the browser is offered.

Figure 6 shows a subset of types and functions of the iTasks
JavaScript FFI which is used in this example. The FFI can be split
into two groups. The first group deals with JavaScript values. For
this purpose we use the (JSVal a) type. This type is a pointer to
a JavaScript value, which real type is unknown. Its type parameter
is just a phantom type used in higher order APIs. However, we
use a special technique to be able to deal with JavaScript values
in a type safe manner. This technique is based on overloading the
built-in dynamic type system of Clean to generate type information
for a given JavaScript value [13]. This type information can be
used to pattern match on the actual type of the value. The type
information is generated by the fromJSVal function, but, based on
this function, unsafe instances are also available to be able to write
more concise code in case the type of the value is known reliably.

In the second group there are functions to deal with attributes
and methods of objects. These are accessing members of objects
(.#), accessing elements of the DOM (getElementById), reading
an attribute of an object (.?), assigning value to an attribute of an
object (.=) and calling a method of an object (.$?, .$).

To illustrate the usage of the interface, we can already de-
fine some utility functions to deal with a HTML5 canvas element

:: JSVal a / / Pointer to a JavaScript value of some type
:: JSObject
:: JSObj:==JSVal (JSObject) / / Unknown JavaScript value

/ / Convert foreign value to Clean dynamics
fromJSVal :: (JSVal a) *JSWorld→ *(Dynamic, *JSWorld)

/ / Unsafe functions converting foreign values
jsValToString :: (JSVal a) → String
jsValToInt :: (JSVal a) → Int

/ / Handling JavaScript objects:

class JSObjAttr a
instance JSObjAttr String
instance JSObjAttr Int

:: JSObjSelector

/ / Select an attribute of object
class (.#) infixl 3 s :: s t → JSObjSelector | JSObjAttr t
instance .# (JSVal o)
instance .# JSObjSelector

getElementById :: String→ JSObjSelector

/ / Read an attribute, assign a value, call a function
.? :: JSObjSelector *JSWorld→ *(JSVal r, *JSWorld)

(.=) infixl 2 :: JSObjSelector v → *(*JSWorld→ *JSWorld)
(.$?) infixl 1 :: JSObjSelector a

→ *(*JSWorld→ *(JSVal r, *JSWorld)) | ToArgs a

/ / Drop return value of the application function
(.$) infixl 1 :: o a → *(*JSWorld→ *JSWorld) | .$? o & ToArgs a

Figure 6. The subset of JavaScript FFI used in the paper

which is used by our component to draw graphics. Its getContext
method returns a rendering context, a built-in HTML5 object, with
many properties and methods for drawing paths, boxes, circles,
text, images, and more. The definition of some of the utility func-
tions are neglected as they are straightforward to implement based
on the others:

/ / Context provides methods and properties for drawing on the canvas
:: JSCanvasContext
:: Context:==JSVal JSCanvasContext

/ / Return the context of a canvas given by HTML id
getContext :: String *JSWorld→ *(Context, *JSWorld)
getContext canvasId world

= (getElementById canvasId .# "getContext" .$? ("2d")) world

/ / Clear a canvas for redrawing
clearCanvas :: Context *JSWorld→ *JSWorld

/ / Draw a line using the given color, coordinates and context
drawLine :: Context Color Int Int Int Int *JSWorld→ *JSWorld
drawLine context color x1 y1 x2 y2 world
world= (context .# "beginPath" .$ ()) world
world= (context .# "strokeStyle" .= color) world
world= (context .# "moveTo" .$ (x1, y1)) world
world= (context .# "lineTo" .$ (x2, y2)) world
world= (context .# "stroke" .$ ()) world
= world

drawRect :: Context Color Filled
Int Int Int Int *JSWorld→ *JSWorld

drawCircle :: Context Color Filled
Int Int Int Int *JSWorld→ *JSWorld

Figure 7. The Painter Application Component

/ / Draw an arbitrary shape using the specialized functions
draw :: Context Shape *JSWorld→ *JSWorld

These functions are intuitive to read and write as their structure
mimics the structure of their imperative counterparts. The names of
the operators are also chosen carefully that the individual calls re-
semble to the corresponding JavaScript commands. Still, the func-
tions are written in the single-language manner in Clean enabling
access to all the features of a pure, lazy functional language.

6.3 The Painting Application
The application we want to create on the client is shown in Figure 7.
Below the actual canvas, the user can choose the tool from a drop-
down list, and the current color can be chosen by clicking on one
of the small boxes next to the canvas.

To keep the example illustrative, it is not allowed to delete or
modify an already drawn shape. That would add much complex-
ity to both the user interface and the synchronization parts, thus
hampering the comprehension of the main idea. Handling conflict
situations, depending on the actual task, can be arbitrarily hard, and
there is no “proper” logic to do it. Editlets offer a general mecha-
nism to build any customized conflict resolution logic.

Since in the editor on the client one can only add, but cannot
remove or modify shapes, the incremental updates can be given by
the list of newly added shapes. Therefore, [Shape] is used as the
edit type for this application.

The following record type is used as the state of the client-
application:

:: PainterState= { selectedTool :: Tool
, selectedColor :: Color
, currentOrigin :: Maybe (Int, Int)
, currentShape :: Maybe Shape
}

:: Tool = TLine | TRect | TRectF | TCircle | TCircleF
:: Color= Yellow | Red | Green | Blue | Black

The selectedTool and selectedColor fields contain the cur-
rently selected tool and color, respectively. For understanding the
remaining two fields, currentOrigin and currentShape, we
need to explain how the drawing of a given shape takes place.

A very simple approach could be to ask the user to select
two points on the canvas and the shape is drawn between these
points. It is very tempting to follow this approach, mainly because
of its simplicity. However, in the same time, it would render our
component completely unusable, as it is hard to draw images for a
human without constant visual feedback. Thus, the usual approach
is taken: drawing of a shape starts when the user presses the left
mouse button, and ends when it is released. As long as the left
button is pressed, while the user moves the mouse, the current
appearance of the shape is continuously updated on the screen.

Therefore, the currentOrigin field contains the start coordi-
nates of the shape being drawn, while the currentShape contains
the drawn shape itself. They only contain an actual value while the
left mouse button is pressed.

Finally, some explanation on the implementation of this mecha-
nism. In JavaScript, it can most easily be done by using a temporary
drawing canvas to overlay a permanent canvas. The permanent can-
vas contains all the shapes which are already “committed”, while
the shape being drawn is put on the temporary canvas, which can be
cleared and redrawn as it contains only that one. When the user re-
leases the mouse button, the final shape is copied to the permanent
canvas.

The actual user interface is created by the painterGUI func-
tion. It generates the two canvases discussed before, small boxes as
HTML DIV elements for the color selectors to the right of the can-
vases, and a drop down list just under the canvases for choosing the
current tool (please note that the code below is slightly simplified
for presentation purposes):

painterGUI :: ComponentHTML [Shape] PainterState
painterGUI= { html = DivTag [] [canvases:editor]

, eventHandlers= eventHandlers
}

where
canvases=

DivTag [StyleAttr "position: relative; float: left;"] [
CanvasTag [IdAttr "pcanvas"] [] ,
CanvasTag [IdAttr "tcanvas" ,

StyleAttr "position: absolute;"] []
]

editor= [
DivTag [StyleAttr "float: right;"] (map selector colors) ,
DivTag [StyleAttr "clear: both;"] [] ,
DivTag [] [Text "Tool:" ,

SelectTag [IdAttr "tool"] (map tag tools)]
]

tools = [TLine, TRect, TRectF, TCircle, TCircleF]
colors= [Yellow, Red, Green, Blue, Black]

tag tool= let text= toString tool
in OptionTag [ValueAttr text] [Text text]

selector color= DivTag [IdAttr (mkId color) ,
StyleAttr ("background-color:"+++toString color+++";")] []

colorEvent color
= ComponentEvent (mkId color) "click" (onSelectColor color)

eventHandlers= map colorEvent colors++ [
ComponentEvent "tcanvas" "mousedown" onMouseDown,
ComponentEvent "tcanvas" "mouseup" onMouseUp,
ComponentEvent "tcanvas" "mousemove" onMouseMove,
ComponentEvent "tool" "change" onChangeTool

]

The list of event handlers is associated with the elements of the user
interface: one for each of the color selectors, one for the drop down

list of the available tools, and one for each of the mouse events we
use to handle drawing.

As the user clicks on one of the color selectors, the border of the
selected color box is highlighted and the state is changed according
to the new selection, but no edit is generated. The selected color
is in the first argument of the event handler as partially applied
functions are used for this purpose:

:: PaintEventHnd:==JSObj PainterState *JSWorld
→ *(PainterState, ComponentDiff [Shape] PainterState, *JSWorld)

onSelectColor :: Color→ PaintEventHnd
onSelectColor color e state world
world= foldr (setBorder "white") world allBoxes
world= setBorder "pink" (e .# "target") world
= ({state & selectedColor= color}, NoEdit, world)

where
allBoxes= map (getElementById o mkId) colors
setBorder color el world

= (el .# "style" .# "borderColor" .= color) world

When the tool is changed, we just read the new identifier and set it
in the state:

onChangeTool :: PaintEventHnd
onChangeTool e state world
(idx, world) = .? (e .# "target" .# "selectedIndex") world
(os, world) = .? (e .# "target" .# "options") world
(tool, world) = .? (os .# jsValToInt idx .# "value") world
= ({state & selectedTool= fromString (jsValToString tool)} ,

NoEdit, world)

The drawing begins when the user pushes the mouse button. Then
we read the current position of the mouse and set it in the state to
indicate that drawing is in progress:

getCoordinates :: JSObj *JSWorld→ *((Int, Int) , *JSWorld)
getCoordinates e world
(x, world) = .? (e .# "layerX") world
(y, world) = .? (e .# "layerY") world
= ((jsValToInt x, jsValToInt y) , world)

onMouseDown :: PaintEventHnd
onMouseDown e state world
(coordinates, world) = getCoordinates e world
= ({state & currentOrigin= Just coordinates}, NoEdit, world)

The actual drawing happens when the mouse is moved while the
mouse button is pressed. Thus, in the onMouseMove event handler
function, first the presence of the currentOrigin coordinates
must be checked:

onMouseMove :: PaintEventHnd
onMouseMove e state world
= case state.currentOrigin of

Just coordinates= onDrawing coordinates e state world
Nothing = (state, NoEdit, world)

If they are set, then using these coordinates and the current coordi-
nates of the mouse, along with the current color and tool, we can
create a shape to draw it to the temporary canvas (which is cleared
before that). Finally, the shape is saved in the state as it will be
needed to finalize the drawing:

onDrawing :: (Int, Int) → PaintEventHnd
onDrawing (ox, oy) e state world
((x, y) , world) = getCoordinates e world
shape= case state.selectedTool of

TLine = Line state.selectedColor ox oy x y
TRect = Rect state.selectedColor False ox oy x y
TRectF = Rect state.selectedColor True ox oy x y
TCircle = Circle state.selectedColor False ox oy x y
TCircleF= Circle state.selectedColor True ox oy x y

(tempcontext, world) = getContext "tcanvas" world
world= clearCanvas tempcontext world
world= draw tempcontext currentShape world
= ({state & currentShape= Just shape}, NoEdit, world)

The drawing is finalized when the mouse button is released: the
temporary canvas is cleared and the shape saved by onDrawing is
copied to the permanent canvas:

onMouseUp :: PaintEventHnd
onMouseUp e state world
(tempcontext, world) = getContext "tcanvas" world
world = clearCanvas tempcontext world
(edit, world) = case state.currentShape of

Just shape
(context, world) = getContext "pcanvas" world
= (addShape shape, draw context shape world)

Nothing
= (NoEdit, world)

= ({state & currentOrigin= Nothing, currentShape= Nothing},
edit, world)

This is the only point of user interaction when the value associated
with the editlet can change: when the user releases the mouse
button, and the mouse moved since the button was pressed, that
is the currentState field of the state contains a shape. In this
case the shape is copied to the permanent canvas and an edit is
generated:

addShape :: Shape→ ComponentEdit [Shape] PainterState
addShape shape= Edit [shape] callback
where
callback True state world

(context, world) = getContext "pcanvas" world
= (state, addShape shape, draw context shape world)

callback False state world
= (state, NoEdit, world)

As it is explained in Section 5, the client part of the editlet applies
edits to the shared server value in an asynchronous manner. There
is a continuation function associated with the edits which is exe-
cuted when the edit is finally applied or rejected. In this particular
example, we take a highly optimistic approach: the new shape is
drawn to the canvas in the same time when the edit is created. Later
on, if the edit is rejected, the shape is drawn to the canvas again
(to be the top most shape on the canvas again) and the same edit is
tried again. If it is accepted we are fine, the shape is already the top
most on the canvas.

When the notification of the rejection of a previous edit is trig-
gered on the client, the client state had already been synchronized
with the server value (the edit(s) causing the conflict on the server
are applied to the client state). Further considering that an edit, in
this particular case, can describe the addition of new shapes only
(thus does not depend on the current value to be applied to), it is
safe to reapply the rejected edit at that point.

6.4 Synchronization Functions
So far, we have a function to generate the user interface (the
painterGUI function), which also describes when and how to gen-
erate edits on the client. To finish our editlet, we need to provide
the rest of the synchronization interface. These are the functions for
the genEditSrv (the function updateClient), appEditSrv (the
function calculateEditsServer) and appEditClt (the func-
tions updateServer) fields of the (Editlet value) record type.

updateClient :: [Shape] PainterState *JSWorld
→ *(PainterState, *JSWorld)

updateClient edit state world
(context, world) = getContext "pcanvas" world
= (state, foldl (λworld s= draw context s world) world edit)

calculateEditServer :: Drawing Drawing→ Maybe [Shape]
calculateEditServer (Drawing oldss) (Drawing newss)
= case drop (length oldss) newss of

[] = Nothing
edit= Just edit

updateServer :: [Shape] Drawing→ Drawing
updateServer ns (Drawing ds) = Drawing (ds++ ns)

In this particular case the state of the client-application, the
PainterState does not actually need to store a client-side coun-
terpart of the server value. We do not need to traverse that data
any time on the client, only have to draw the shapes to the canvas
in the correct order. It is guaranteed that edits are delivered in the
proper order to the clients. Hence the updateClient function just
updates the user interface by drawing the new shapes to the canvas,
and does not modify the state value.

On the server, an edit sent by one of the clients, a list of new
shapes being added, is handled by the function updateServer.
It just appends the list of new shapes to the shapes that already
have been drawn and collected on the server in the value of type
Drawing.

Finally, the calculateEditServer function also exploits the
fact that the original drawing cannot be modified: it calculates the
difference between an old and a new drawing by determining the
number of shapes that might have been added.

7. The architecture of client-side execution
A crucial point of a single-language solution is the way the
JavaScript code is produced and handled. In a single-language set-
ting, client and server code is mingled, and, unless there is special
syntactic construction introduced in the language for indicating
which code is intended for client or server, the code cannot be
separated during compilation. This can have the consequence that
the whole application, including the code which is only relevant to
the server, is compiled to JavaScript and shipped to the browser.
This results in an explosion of code that not only causes huge com-
munication overhead, but also a waste of browser resources. From
security perspective, shipping unnecessary cross-compiled server
code to the client, would also expose the structure of the server,
which can help to reveal any potential weaknesses.

To overcome this issue in iTasks, we developed a special
JavaScript compilation technique integrated with the Clean lan-
guage. The compilation technique has four key components: (1)
the SAPL [21] language, (2) a compiler extension, (3) run-time
support, and (4) the SAPL compiler infrastructure [12], which is
a library to handle SAPL source code. This library supports low
level functions e.g. parsing SAPL source code, program transfor-
mations, and it also provides high level functionality, e.g. linking.
A full-featured SAPL to JavaScript compiler [15] is also imple-
mented.

The first component, the SAPL language, is an intermediate lan-
guage designed to contain only the essential minimum of language
features of a lazy, functional language like Clean or Haskell, while
preserving the semantics. Furthermore, its syntax is carefully con-
structed such that it can be easily handled at source code level.
These properties makes it perfect for efficient source code level
linking, and for fast cross compilation as a source language.

The second component is a Clean compiler extension. Dur-
ing the compilation of an iTasks application, besides the server
executable running in native code, an intermediate representation
of the same application in the SAPL language is also created.
This extension is seamlessly integrated with the Clean compiler, it
just transparently creates a directory, along with the native binary,
which contains all the SAPL source code.

The third component is the run-time support. During the execu-
tion of an application, the Clean run-time can be asked to provide
the SAPL source code needed for the evaluation of an arbitrary
Clean expression.

Using the SAPL expression, the last component, the SAPL li-
brary, is utilized to recursively collect the SAPL code the expres-
sion depends on, using the SAPL source code of the application.
Then, the collected SAPL source is ran through an iTasks specific,
per client caching mechanism. Its task is to filter out the functions
which have already been sent to a given client in the corresponding
session. The SAPL functions which are not yet on the client, are on
the fly compiled to JavaScript and shipped to the browser.

This overall architecture enables to reduce the communication
cost to the potential minimum and to preserve as much browser
resources as possible.

8. Related work
There are three main groups of works that are closely related to
editlets. These are the multi-tier programming languages, including
our previous approach with tasklets, JavaScript cross-compilers,
and the theory of change based bidirectional transformations.

Multi-tier programming languages
Several other languages address multi-tier programming. In the
imperative world the most modern approach is the Google Web
Toolkit (GWT) [1], Google Dart [3] and Node.js [36]. GWT uti-
lizes a Java to JavaScript compilation technique for building com-
plex browser-based applications. GWT fosters classical GUI pro-
gramming where widgets can be developed using a programming
model comparable to that of editlets.

The Dart language and the Node.js framework take a different
approach. They enable multi-tier programming by providing a run-
time environment of their languages for both client and server side.
The language of Node.js is JavaScript, which is native in the web
browsers; the framework also provides a run-time environment, in-
cluding IO libraries, for the server side. Dart is a programming lan-
guage developed by Google specially designed for web application
engineering. On the client, it compiles to JavaScript, on the server
it is executed by a Dart virtual machine.

These aforementioned systems have a more general approach
than iTasks and editlets, but they still share the idea of using
the same language on both client and server side and implicitly
bridging the communication between them.

Hop [33, 34] uses a declarative approach. It is a dedicated web
programming language with a HTML-like syntax built on top of
Scheme. Hop uses two compilers, one for compiling the server
side program and one for compiling the client-side part. The client-
side part is only used for executing the user interface. Hop uses
syntactic constructions for indicating client and server part code.
The application essentially runs on the client and may call services
on the server. In contrast, an iTasks application essentially runs on
the server and may execute services, editlets, on the client.

Links [9] and its extension Formlets is also a functional language-
based web programming language. Links compiles to JavaScript
for rendering HTML pages, and SQL to communicate with a
back-end database. In a Links program, the keywords client and
server force a top-level function to be executed at the client or
server respectively.

The iTask framework differs from the latter two by fostering
a non view-centric approach even in the component development.
Links and Hop have extended syntax for embedding XML descrip-
tions in the language; this is used to mix the user interface definition
and the behavior of the application. During editlet development the
model-view-controller user interface design is enforced to separate
these roles.

Another important difference is that editlets blur the boundaries
of different tiers. Links uses location annotations, Hop utilizes
special syntactic construction to denote the target tier of a given
function or expression. In editlets this is implicit (basically the
controller role runs in the browser) but unconcerned. If a function
is pure, it does not matter where it is executed. If it is not pure, the
available resources are controlled statically by the signature of the
function.

As for iTasks, we already compared our previous approach,
tasklets, to editlets in Section 3. However, there are also earlier
implementations of similar features utilizing a Java written SAPL
interpreter [21] as a browser plug-in. The iEditors [22] enables
the development of interactive web UI elements as editlets do,
however, it does not allow direct access to browser resources,
therefore its applicability is restricted to functionality provided by
the plug-in. As a consequence, it does not have the single-language
property either, because for some functionality the plug-in has to be
extended using Java. There also had been client-side task evaluation
attempts for an early version of iTasks using the same plug-in based
interpretation technology [30]. However, our approach, to give one
general solution for both of the problems is a novel strategy.

JavaScript cross-compilers
JavaScript cross-compilation is a subject that has drawn much at-
tention in the last years as web applications getting richer and richer
to improve the web experience. Virtually every modern program-
ming language has at least one JavaScript cross-compiler, thus we
limit ourselves to the comparison of some very closely related tech-
nologies and concentrate on the high level architecture only (an ex-
planation of the compiler can be found in [15]).

The most relevant technologies are the aforementioned Links
and Hop languages. Both languages are functional just like Clean,
however unlike these languages, Clean is a lazy functional lan-
guage. Although this property has a big impact on the actual compi-
lation technique, it only slightly affects the high level architecture.
The main difference between them is rather that these languages
are specially designed as multi-tier. This has a consequence that
the client and server side code is distinguished by special syntac-
tic constructs at source code level. Thus, the client and server side
code can be separated during compilation time. However, this does
not take into consideration the dynamic behavior of the application.
In our architecture, only those functions are shipped to the browser
which are actually requested at run-time; the difference can be sig-
nificant in some executions.

Another relevant technology is GHCJS [2], the most advanced
JavaScript cross-compiler for the Glasgow Haskell Compiler (GHC).
As Haskell and Clean are from the same family of the functional
languages, and they are actually very similar in many viewpoints, it
is worthwhile to compare the architecture of its flagship JavaScript
cross-compiler and the architecture of our cross-compiler.

In contrast to our solution, GHCJS takes a module based
approach. During compilation, along with the object files, the
JavaScript version of the modules are also generated. The final
client-side “executable” is produced by simply combining the
JavaScript versions of all the referenced modules together. Al-
though this approach definitely has the advantage that no runtime
component is necessary in the architecture, it also suffers from pro-
ducing an explosion of code: Haskell applications tend to use many
libraries and many generically created functions which are blindly
merged resulting in an enormous amount of JavaScript code.

Although most of the cross-compilers use a kind of simplified
core language as the source of the compilation, the idea to use this
intermediate core language for linking as well, thus reducing the
size of the output, is a novel idea as far as we know.

Change based bidirectional transformations
In general, bidirectional transformations are a mechanism for main-
taining the consistency of two related sources of information [10].
In the field of bidirectional transformations, the most closely re-
lated work is the so called bidirectional lenses [16]. Within lenses,
edit lenses [19, 39] bear the most resemblance to our data synchro-
nization interface.

In a nutshell, edit lenses define bidirectional transformations be-
tween pairs of connected structures, where each of the two struc-
tures may contain information that is not present in the other (also
known as symmetric lenses [20]). Moreover, edit lenses work with
descriptions of changes to structures, rather than with the structures
themselves. In practice that means that with each of the connected
structures there is an additional associated data structure, an edit
language, to define the changes of the original structure. The ac-
tual changes, the edits, of the structures are converted to each other
by a bidirectional transformation, the edit lens, in a stateful manner.

It has two main differences comparing with editlets: (1) our case
is not symmetric in the sense that the value held by the server
does not contain information that is not synchronized with the
clients; (2) there is only one edit language.

However, from another perspective, these are not important
differences. If the lens is applied on the client (in the appEditClt
function), which is stateful, then for the external observer the state
of the edit lens and one of edit languages is hidden. This means that
the necessary synchronization functions of an editlet can be easily
defined based on an existing edit lens implementation.

Finally, another group of works addresses the generation of
edits [11, 17, 40]. Although these are interesting for our case,
adapting such a framework is beyond the scope of this paper.

9. Conclusion and future work
In this paper we have presented an extension to iTasks, for the
development of interactive web components in a single-language
manner. This extension is based on our previous experiment in the
same topic, called tasklet. We have identified several shortcomings
of this previous approach based on experiments with real-world
applications, what we used to set new requirements. Based on this
new set of requirements, we have designed a new component type,
called editlet, which is superior to tasklets from many perspectives.
The main properties of the editlet architecture are the following:

• Editlets enable the development of arbitrary browser applica-
tions in the single language Clean.
• Editlets are integrated with the type-driven approach used in

iTasks to generate the user interface. The default behavior of
the user interface generation can be overwritten by registering
an editlet to be associated with a given type.
• Editlets can work on shared data, moreover, it is done in a way

which enables the developer to deal with conflicting updates
efficiently in an asynchronous manner to keep the user interface
responsive.
• The client-server communication is done in changes, called

edits, instead of exchanging the whole shared value. In certain
applications, it dramatically reduces the communication cost.
• Editlets are based on an advanced client-side execution archi-

tecture to reduce the amount of generated JavaScript code to the
minimal possible. The JavaScript cross-compiler is integrated
transparently in the Clean tool chain.

Although editlets is an iTasks extension, these properties make
it interesting in a global perspective. The client-side execution
architecture, the edit based communication interface and the type-

based approach are all interesting properties in their own right, and
can be integrated with other languages and frameworks.

As for the future work, we are planning two major tasks. First
we would like to upgrade iTasks SDSs to be based on edits as well.
The edit type would be attached to the value type by functional
dependencies to be global for the whole system, and the SDSs
would be updated by edits even on the server. In this way we could
get rid of the genEditSrv function from the editlet definition.

The other task affects the JavaScript cross-compiler. Currently
it is not safe in the sense that during code generation some sensible
data may be shipped to untrustworthy clients. We would like to
overcome this issue by investing in techniques similar to those
developed for the Links language [6].

References
[1] GWT: The Google Web Toolkit site. URL http://code.google.

com/webtoolkit/.

[2] GHCJS. URL https://github.com/ghcjs/ghcjs.

[3] Dart: structured web programming, 2011. http://www.dartlang.org/.

[4] P. Achten. Clean for Haskell98 programmers - a
quick reference guide, July 13 2007. URL http:
//www.mbsd.cs.ru.nl/publications/papers/2007/
achp2007-CleanHaskellQuickGuide.pdf.

[5] A. Alimarine. Generic Functional Programming - Conceptual Design,
Implementation and Applications. PhD thesis, Radboud University
Nijmegen, 2005. ISBN 3-540-67658-9.

[6] I. G. Baltopoulos and A. D. Gordon. Secure compilation of a multi-tier
web language. In In ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI 2009, pages 27–38, 2009.

[7] E. Barendsen and S. Smetsers. Uniqueness typing for functional
languages with graph rewriting semantics. In Mathematical Structures
in Computer Science, volume 6, pages 579–612, 1996.

[8] G. Collins and D. Beardsley. The snap framework: A web toolkit for
haskell. IEEE Internet Computing, 15(1):84–87, 2011. ISSN 1089-
7801. .

[9] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web program-
ming without tiers. In Proc. of the 5th International Symposium on
Formal Methods for Components and Objects, FMCO’06, 2006.

[10] K. Czarnecki, J. N. Foster, Z. Hu, R. Lmmel, A. Schrr, and J. F. Ter-
williger. Bidirectional transformations: A cross-discipline perspec-
tive. In R. F. Paige, editor, ICMT, volume 5563 of Lecture Notes
in Computer Science, pages 260–283. Springer, 2009. ISBN 978-
3-642-02407-8. URL http://dblp.uni-trier.de/db/conf/
icmt/icmt2009.html#CzarneckiFHLST09.

[11] Z. Diskin, Y. Xiong, and K. Czarnecki. From state- to delta-based
bidirectional model transformations: the asymmetric case. Journal of
Object Technology, 10:6:1–25, 2011. ISSN 1660-1769. . URL http:
//www.jot.fm/contents/issue_2011_01/article6.html.

[12] L. Domoszlai. The SAPL compiler infrastructure. URL http:
//wiki.clean.cs.ru.nl/SAPL.

[13] L. Domoszlai and T. Kozsik. Clean up the web! - rapid client-side web
development with clean. In The Beauty of Functional Code, pages
133–150, 2013.

[14] L. Domoszlai and R. Plasmeijer. Tasklets: Client-side evaluation for
iTask3. In Domain specific languages, summer school, DSL’13, 2014.

[15] L. Domoszlai, E. Bruël, and J. Jansen. Implementing a non-strict
purely functional language in JavaScript. Acta Universitatis Sapi-
entiae, 3:76–98, 2011. URL http://www.acta.sapientia.ro/
acta-info/C3-1/info31-4.pdf.

[16] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations: A
linguistic approach to the view-update problem. ACM Trans. Pro-
gram. Lang. Syst., 29(3), May 2007. ISSN 0164-0925. . URL
http://doi.acm.org/10.1145/1232420.1232424.

[17] H. Giese and R. Wagner. From model transformation to incremental
bidirectional model synchronization. Software and Systems Modeling
(SoSyM), 8(1):21–43, February 2009. .

[18] R. Hinze. A new approach to generic functional programming. In
T. Reps, editor, Proceedings of the 27th International Symposium on
Principles of Programming Languages, POPL ’00, Boston, MA, USA,
pages 119–132. ACM Press, 2000.

[19] M. Hofmann, B. C. Pierce, and D. Wagner. Edit lenses. In ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Lan-
guages (POPL), Philadelphia, Pennsylvania, Jan. 2012.

[20] M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric lenses. Journal
of the ACM, 2014. To appear; extended abstract in POPL 2011.

[21] J. Jansen, P. Koopman, and R. Plasmeijer. Efficient interpretation by
transforming data types and patterns to functions. In H. Nilsson,
editor, Proceedings of the 7th Symposium on Trends in Functional
Programming, TFP ’06, pages 157–172, Nottingham, UK, 19-21, Apr.
2006. ISBN 978-1-84150-188-8.

[22] J. Jansen, R. Plasmeijer, and P. Koopman. iEditors: extending iTask
with interactive plug-ins. In S.-B. Scholz and O. Chitil, editors,
Revised Selected Papers of the 20th International Symposium on the
Implementation and Application of Functional Languages, IFL ’08,
volume 5836 of LNCS, pages 192–211, Hatfield, UK, 2011. Springer.

[23] G. E. Krasner and S. T. Pope. A cookbook for using the model-
view controller user interface paradigm in Smalltalk-80. J. Object
Oriented Program., 1(3):26–49, Aug 1988. ISSN 0896-8438. URL
http://dl.acm.org/citation.cfm?id=50757.50759.

[24] H. T. Kung and J. T. Robinson. On optimistic methods for con-
currency control. ACM Trans. Database Syst., 6(2):213–226, June
1981. ISSN 0362-5915. . URL http://doi.acm.org/10.1145/
319566.319567.

[25] B. Lijnse. TOP to the Rescue – Task-Oriented Programming for
Incident Response Applications. PhD thesis, Radboud University
Nijmegen, 2013. ISBN 978-90-820259-0-3.

[26] B. Lijnse, J. Jansen, R. Nanne, and R. Plasmeijer. Capturing the
netherlands coast guard’s sar workflow with itasks. In D. Mendonca
and J. Dugdale, editors, Proceedings of the 8th International Confer-
ence on Information Systems for Crisis Response and Management,
ISCRAM ’11, Lisbon, Portugal, May 2011. ISCRAM Association.

[27] B. Lijnse, J. Jansen, and R. Plasmeijer. Incidone: A task-oriented inci-
dent coordination tool. In L. Rothkrantz, J. Ristvej, and Z. Franco, ed-
itors, Proceedings of the 9th International Conference on Information
Systems for Crisis Response and Management, ISCRAM ’12, Vancou-
ver, Canada, Apr. 2012.

[28] T. van Noort. Dynamic Typing in Type-Driven Programming. PhD
thesis, Radboud University Nijmegen, May 2012. ISBN 978-94-6108-
279-4.

[29] R. Plasmeijer and M. van Eekelen. Clean language report (version
2.1). http://clean.cs.ru.nl, 2002.

[30] R. Plasmeijer, J. Jansen, P. Koopman, and P. Achten. Declarative Ajax
and client side evaluation of workflows using iTasks. In Proceedings
of the 10th International Conference on Principles and Practice of
Declarative Programming, PPDP ’08, pages 56–66, Valencia, Spain,
15-17, July 2008.

[31] R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, T. Van Noort, and
J. Van Groningen. iTasks for a change: Type-safe run-time change
in dynamically evolving workflows. In PEPM ’11 : Proceedings
Workshop on Partial Evaluation and Program Manipulation, PEPM
’11, Austin, TX, USA, pages 151–160, New York, 2011. ACM.

[32] R. Plasmeijer, B. Lijnse, S. Michels, P. Achten, and P. Koopman. Task-
Oriented Programming in a Pure Functional Language. In Proceedings
of the 2012 ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’12, pages 195–206,
Leuven, Belgium, Sept. 2012. ACM. ISBN 978-1-4503-1522-7.

[33] M. Serrano and C. Queinnec. A multi-tier semantics for
hop. Higher-Order and Symbolic Computation, 23:409–431,
2010. ISSN 1388-3690. URL http://dx.doi.org/10.1007/
s10990-010-9061-9.

[34] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language for pro-
gramming the web 2.0. In ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA’06,
2006.

[35] M. Snoyman. Developing Web Applications with Haskell and Yesod.
O’Reilly Media, Inc., 2012. ISBN 1449316972, 9781449316976.

[36] L. M. Surhone, M. T. Tennoe, and S. F. Henssonow. Node.Js.
Betascript Publishing, Mauritius, 2010. ISBN 6133180196,
9786133180192.

[37] P. Thiemann. WASH/CGI: Server-side Web Scripting with Sessions
and Typed, Compositional Forms. In Proc. 4th Int’l Symposium on
Practical Aspects of Declarative Languages, PADL’02, Jan 2002.

[38] J. van Groningen, T. van Noort, P. Achten, P. Koopman, and R. Plas-
meijer. Exchanging sources between Clean and Haskell: a double-
edged front end for the Clean compiler. In J. Gibbons, editor,
Haskell’10 : proceedings of the third ACM Haskell symposium on
Haskell, pages 49–60. ACM, 2010.

[39] D. Wagner. Symmetric Edit Lenses: A New Foundation for Bidirec-
tional Languages. PhD thesis, University of Pennsylvania, 2014.

[40] M. Wang, J. Gibbons, and N. Wu. Incremental updates for efficient
bidirectional transformations. In Proceedings of the 16th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
’11, pages 392–403, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0865-6. . URL http://doi.acm.org/10.1145/2034773.
2034825.

[41] A. van Weelden. Putting types to good use. PhD thesis, Radboud
University Nijmegen, 17, Oct. 2007. ISBN 978-90-9022041-3.

