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Abstract. Programming in Clean is much more appealing than pro-
gramming in JavaScript. Therefore, solutions that can replace JavaScript
with Clean in client-side web development are widely welcomed. This pa-
per describes a technology for the cross-compilation of Clean to JavaScript
and for the tight integration of the generated code into a web application.
Our solution is based on the iTask framework and its extension, the so-
called Tasklets. The application server approach provides simple and easy
deployment, thus supporting rapid development. Examples are shown to
illustrate how communication between the Clean and JavaScript code
can be established.

1 Introduction

Using JavaScript for the development of client-side web applications displeases
the Clean programmer and former web developer writing these words. JavaScript,
even despite it has some functional features, creates a hostile environment com-
pared to Clean. Consider, for example, the lack of type safety, the ugly and
sometimes unnecessarily verbose syntax, and the productivity loss caused by
these. One can also miss very much the elegance of a well-designed and ma-
ture functional language, and the programmers’ self-confidence enhanced by the
strong type system and referential transparency.

Still, JavaScript, as the only language of the platform for browser devel-
opment, is inevitable. As a consequence, several attempts have been made for
cross-compiling all kinds of languages to JavaScript. It is a well-established tech-
nique considering imperative languages, but the picture is not that clear when
the subject of compilation is a functional language. Even worse, compiling a lazy
functional language, such as Clean, to JavaScript is definitely a delicate job.

The main problem is the limitation of the available resources in the browser:
the run-time system imposes severe constraints on heap and stack usage. As
iteration in functional languages is accomplished via recursion, stack limitation
seems to be the most serious issue. A standard technique to overcome this is
trampolining [16], but, as it increases the memory footprint and the running
time of the application, usually it does not perform effectively enough in the
case of lazy functional languages. The reason for the higher memory footprint
in these languages is the need to maintain thunks, i.e. delayed computations.



As for Clean, a mature JavaScript compilation technique is available which
solves these problems to an extent which is applicable for most practical tasks [5].
However, this is only half the job. Compiling a Clean program to JavaScript still
involves numerous steps which hampers the development of client side web appli-
cations in Clean: (1) the Clean program must be transformed to an intermediate
language using the Clean compiler, (2) this intermediate must be compiled to
JavaScript using a standalone application, and (3) the generated JavaScript code
must be integrated into the web application. This complex and mundane process
can nullify the advantages of non-JavaScript development.

In this paper an extension to iTask and Tasklets is presented, to make the
above mentioned deployment process transparent. With this extension, iTask be-
comes a rapid development environment, or even an application server for client
side web applications written in Clean. Furthermore, this extension does not
only solve the aforementioned deployment problem, but it also enables complex
information interchange between the Clean and JavaScript code in a type safe
manner.

The rest of the paper is structured as follows. Section 2 gives a brief introduc-
tion to the iTask system and Tasklets. Section 3 presents what contributions the
present paper makes. To that end, it illustrates the approach and some of the
technical issues through three carefully selected examples. Section 4 discusses
type correspondence between the JavaScript and Clean side of the code. Related
work is described in section 5. Finally, section 6 concludes. The system as well
the examples presented here can be downloaded from the web.1

2 Preliminaries

The iTask system [10] is a framework for programming workflow supporting ap-
plications in Clean using a new programming paradigm built around the concept
of tasks [15]. A task is an abstract description of an interactive persistent unit of
work which delivers a value when it is executed. From a practical point of view,
a task can be anything from a system call to some interaction to be performed
in a web browser by a user.

iTask provides a combinator-based embedded domain specific language to
specify compositions of such interdependent tasks. A complete multi-user web
application can be generated from the specification of the workflow and of the
different data types involved – all the details (including the web user interface,
client-server communication, state management etc.) are automatically taken
care of by the framework itself.

Developing web applications such a way is straightforward in the sense that
the programmers are liberated from these cumbersome and error-prone jobs, such
that they can concentrate on the essence of the application. The iTask system
makes it very easy to develop interactive multi-user applications. The down side
is that one has only limited control over the customization of the generated user

1 http://people.inf.elte.hu/dlacko/papers/rapmix/



interface. Sometimes, even if the functional web design is satisfactory, custom
building blocks may be required for the purpose of user-friendliness.

Tasklets, a recent extension to iTask, are introduced to overcome this short-
coming [6]. Tasklets enable the development of interactive web components di-
rectly in Clean. A tasklet consists of an inner state, user interface, and behavior
provided by non-pure event handler functions. The user interface can be de-
fined in any abstract or concrete way that enables HTML code generation. The
event handlers are written in Clean, but compiled to JavaScript and executed in
the browser where they have unrestricted access to client-side resources. Using
browser resources, the tasklet can create custom appearance and exploit func-
tionality available only in the browser; utilizing the event-driven architecture the
tasklet can achieve interactive behavior.

From a technical point of view, tasklets are defined by the means of the
Tasklet st val record type. It has two type parameters: one of the parameters
denotes the type of the internal state of the tasklet (st) while the other gives
the type of its observable state (val):

:: Tasklet st val = { generatorFunc :: (*World → *(TaskletGUI st, st, *World))
, resultFunc :: (st → Maybe val)
}

During initialization, generatorFunc is executed on the server to provide the
user interface and the initial state of the tasklet. Its only argument, a value of
the unique type *World, allows access to the external environment. Whenever
needed, the current observable value of the tasklet can be computed from the
internal state by calling resultFunc. This value is optional (Maybe). The user
interface and its behavior are defined by the TaskletHTML structure:

:: TaskletGUI st = TaskletHTML (TaskletHTML st) | ...

:: TaskletHTML st = { html :: HtmlDef

, eventHandlers :: [HtmlEvent st]
}

:: HtmlDef = ∃a: HtmlDef a & toHtml a

:: HtmlEvent st = HtmlEvent HtmlElementId EventType (EventHandlerFunc st)
:: EventType = OnClick | OnMouseOver | OnMouseOut | ...

:: EventHandlerFunc st :== (st HtmlObject *HtmlDocument → *(*HtmlDocument, st))

The actual user interface (html field) can be given by any data structure provided
that it has an instance of the function class toHtml.

The run-time behavior of a tasklet is encoded in a list of event handler
functions (eventHandlers field). Event handlers are defined using the HtmlEvent

type. Its only data constructor has three arguments: the identifier of an HTML
element, the type of the event and the event handler function. During the in-
stantiation of the tasklet on the client, the event handler function is attached to
the given HTML element to catch events of the given type.

The event handler functions work on the JavaScript event object (a value
of type HtmlObject in Clean) and on the current internal state of the tasklet.
They also have access to the HTML Document Object Model (DOM) to maintain



their appearance. The DOM is a shared object from the point of event handlers,
therefore it can be manipulated only the way as IO is done in Clean, through
unique types. That is, accessing the DOM is possible only using library functions
controlled by the unique *HtmlDocument type.

Following the tasklet definition, a wrapper task must be created to hide the
behavior of the tasklet behind the interface of a task (tasks are represented by
the opaque type Task a, where a denotes the type of the value of the task):

mkTask :: (Tasklet st a) → Task a

The life cycle of a tasklet starts when the value of the wrapper task is requested.
First, generatorFunc is executed on the server to provide the initial state and
user interface of the tasklet. Then, the initial task state and the event handlers
defined in Clean are on the fly compiled to JavaScript and, along with the UI
definition, shipped to the browser. In the browser, the HTML markup is injected
into the page and the event handlers are attached. As events are fired, the related
event handlers catch them, and may modify the state of the tasklet and the
DOM. If the state is changed, resultFunc is called to create a new result value
that is sent to the server immediately. The life cycle of the tasklet is terminated
by the framework when the result value is finally taken by another task.

3 Rapid development with iTask

In iTask, the deployment process during development is fairly straightforward.
Given an iTask task, aTask, by adding the following main function and running
the application, an embedded web server is started, which publishes the task on
the local host.

Start :: *World → *World

Start world = startEngine aTask world

When the page is requested in the browser, first a client-side run-time environ-
ment is loaded, which manages the user interface (UI) of the tasks. The actual
task is published on a special URL where it provides the abstract description of
its UI as a JSON encoded descriptor object. The run-time environment can load
and display such abstract UI descriptions.

A tasklet is self-contained in the sense that its UI description contains all
the JavaScript code necessary to run the tasklet in the browser. Thus, to turn
an iTask application into an application server for non-iTask applications, all we
have to do is to provide, as a standalone JavaScript library, a small part of the
aforementioned run-time environment: a part which is able to load and create a
tasklet. On the server side, a list of tasklets can be published all at once:

Start world = startEngine [{ PublishedTask

| url = "/test"

, task = TaskWrapper (const testTasklet)
, defaultFormat = JSONGui}]

world



This overloaded version of function startEngine enables the specification of a
list of tasks together with the URLs where they will be published (in the example
above the list had only one element).

On the client side, loading the published tasklet is this simple:

<html>

<head>

<script type="text/javascript" src="tasklet-runtime.js"/>

<script type="text/javascript">

loadTasklet("http://localhost/test", function(tasklet){

tasklet.display(document.getElementById("out"));

});

</script>

</head>

<body>

<div id="out"/>

</body>

</html>

The JavaScript library tasklet-runtime.js is less than 10 kB compressed. It
contains the logic for loading and instantiating tasklets, as well as the run-time
environment of the Clean to JavaScript compiler. Function loadTasklet tries
to load a tasklet from the URL given in its first argument. Since the loading
mechanism is implemented with an asynchronous AJAX request, a call-back
function must also be provided as a second argument; this will be called when
the tasklet is loaded and created in the browser.

An instantiated tasklet is represented as a JavaScript object with the prede-
fined prototype Tasklet. It encapsulates and hides all the properties of a tasklet
(the user interface, the state and the behavior), and exposes only the display

method which injects the UI of the tasklet into a given point in the HTML DOM.

Using the above method, an arbitrary tasklet can be included into a non-
iTask application. However, it is still a foreign element in the application, as it
runs independently and has no way for information exchange. In the following
sections our solution is presented to this problem. We propose a mixed-language
programming model where different parts of a web-application are written in
either Clean or JavaScript, making the best use of the two languages. Each
functionality can be coded in the language which suits better to the given task,
and interaction is made easy between fragments written in the two languages.
Rapid application deployment is supported by the concept of an application
server for client-side web applications. Tasklets run embedded in a lightweight
application server, which generates and supplies the JavaScript code through a
standard web socket; the client side support library automatically injects this
JavaScript code into the web page. At the end of program development, the
application server can be eliminated: the JavaScript code generated from the
tasklets can be saved into a .js or .html file, and deployed on a web server.



Our approach will be demonstrated step-by-step in the following sections
through a series of example applications. What these examples have in common
is the lack of a user interface and observable state of tasklets. According to the
principle that in a mixed language environment both languages should be used
at their best, we chose to implement control and user interaction in JavaScript,
and stress pure style in the Clean code. This approach results in a very special,
unconventional use of iTask and Tasklets. To indicate that a given tasklet does
not encapsulate a GUI, a new data constructor NoGUI for the type TaskletGUI

is introduced. Moreover, as it is used for task-to-task communication in proper
iTask applications only, no return value (observable state) for tasklets are needed
here. Therefore, in the forthcoming examples, for the creation of tasklets, we use
the initially function which specifies the initial internal state only.

initially :: st → Tasklet st Void

initially st = { generatorFunc = λworld = (NoGUI, st, world)
, resultFunc = const Nothing

}

3.1 Writing the logic of a web application in Clean

One day the need to display Clean source code in a web application, as part of a
source code repository, has emerged. Many Clean developers use the integrated
Clean development environment, CleanIDE, for programming. This environment
provides excellent syntax highlighting, and Clean developers have really got used
to it. Therefore the same style to present Clean code seemed highly desirable
for our web application. Reprogramming the functionality in JavaScript would
have been a fairly complex task. However, with our tasklet-based framework
it has proven to be relatively easy. We decided to use the modules responsible
for syntax highlighting in the CleanIDE, which meant more than 1000 lines
altogether. We had to add a main module containing a tasklet definition (which
mimics the CleanIDE for calling in the syntax highlight module) and a Start

rule: 30 effective lines of code. Furthermore, 18 effective lines of JavaScript and
13 effective lines of HTML code had to be written only. The Clean to JavaScript
compiler generated 136 kB of JavaScript from the 33 kB of Clean code, and the
source code viewer was up and running. Now we take a closer look at the code.

:: Color :== String

highlight :: [String] → [ [ (String, Color) ] ] // definition omitted

annotateI (Just dynArg) st eventqueue = (res, st, eventqueue)
where res = case dynArg of (lines :: [String]) = highlight lines

highlighter = mkInterfaceTask (initially Void) [InterfaceFun "annotate" annotateI]
Start world = startEngine [{PublishedTask | url = "/highlighter"

, task = TaskWrapper (const highlighter)
, defaultFormat = JSONGui}]

world



The unnecessary technical details have been omitted, as well as the body of the
highlight function, which can be written as the composition of some functions
defined already in the CleanIDE.

In the case of this simple tasklet, not only the GUI and the result value,
but also the internal state is absent, i.e. Void. The only way to interact with
the highlighter tasklet is to call its single interface function, annotateI, from
the JavaScript code. When a tasklet is created with mkInterfaceTask (defined
in the tasklet library), a list of interface functions can be passed. In this case,
this list has a single entry: whenever the JavaScript code calls the annotate

method of the tasklet, the code generated from the annotateI function is ex-
ecuted. This annotateI takes the current (Void) state of the tasklet and an
event queue (explained in section 3.3), and returns them unmodified. Informa-
tion from JavaScript to Clean is received through the second parameter, which
is of type Maybe Dynamic. Dynamics provide dynamic typing facilities in a stat-
ically typed language [1, 14].) We expect here that a list of strings is stored in
the Dynamic, namely the lines of some Clean source code. If the dynamic pattern
matching fails, the run-time engine triggers an exception to inform the caller.
The highlight function will be called with the lines found in the dynamic: it
splits each line into tokens, and annotates each token with its colour. The token
and its colour is represented as a pair of strings, a list of pairs corresponds to a
line, and the list of lists is the whole program text syntax highlighted. This list
of lists of pairs of strings is sent back to the JavaScript side as a component of
the triple returned by annotateI.

To understand how types are handled in our Clean to JavaScript compiler,
consider below the interesting part of the JavaScript side in our mixed-language
application.

function onLoadTasklet(tasklet){

var lines = prepareLines();

var tokens = tasklet.intf.annotate(lines);

for(var i=0; i<tokens.length; i++){

for(var j=0; j<tokens[i].length; j++){

var token = tokens[i][j][0];

var color = tokens[i][j][1];

appendToken(token, color);

}

appendNewLine();

}

}

loadTasklet("http://localhost/highlighter", onLoadTasklet);

When the page is loaded, the function loadTasklet is executed by the browser.
The tasklet is loaded from the specified URL, instantiated, and onLoadTasklet

is called with it. This latter function first creates an array of strings (i.e. lines),
which is passed to the annotate interface function of the tasklet (the interface
functions are created under the intf namespace to avoid possible name collisions



with the original properties of the Tasklet prototype). Note that this array of
strings corresponds to a Dynamic containing a list of strings in the Clean side
(the details of the type correspondence algorithm are explained in section 4).
Function annotate returns an array of arrays of arrays of strings, tokens, which
is processed in a straightforward way in the for-loop.

Communication between JavaScript and Clean sources is, therefore, accom-
plished in the following way. Primitive types of Clean are represented with similar
primitive types in JavaScript, while lists and tuples are represented by arrays
(an n-tuple is represented as an array of length n, e.g. 2 in our example). Alge-
braic types are also represented by arrays – the name of a data constructor is
stored in the first element of such an array. Values from JavaScript correspond to
Dynamic in Clean, so that pattern matching on types in the Clean side facilitates
type-safe programming. This has been an example of an interface function with
a single argument. Interface functions with no arguments receive a Nothing, and
those with multiple arguments will find a tuple in the Dynamic.

3.2 Adding state and interaction

Suppose you must write some interactive presentation logic to be executed in a
browser. For example, you want to display the bibliographic data of your publi-
cations in a searchable, filterable way on the web (Fig. 1). The application should
receive a BIBTEX file as input, and parse, filter and pretty-print the entries found
in this file. To write a client-server application for this, and implement parsing
and filtering on the server would be too much hassle. It is more reasonable to
send over the data to the browser all at once, parse it, and then let an interac-
tive client side application filter the data and display the selected items. Coding
all these activities in JavaScript is not what you would like to do on a rainy

Fig. 1. Web application for filtering bibliographic data



Friday afternoon. Contrarily, much of the functionality is fairly straightforward
to develop in Clean, using higher order functions. To implement parsing, for
instance, the Parser Combinator library of Clean may prove useful. It turns out
that tasklets are a valuable tool for building this application.

The main difference between this and the syntax highlighter application is
that interaction with the user is required, and that there is some state that
should be preserved between user interactions. We suggest that the state should
be stored in the JavaScript side of the code, and state-to-state functions should
be written in Clean. The following fragments present the interesting parts from
the JavaScript side of the code.

var entries;

var tasklet;

function onLoadTasklet(aTasklet){

tasklet = aTasklet;

entries = tasklet.intf.init();

var refs = prepareReferences();

for( var i=0; i<refs.length; i++ )

entries = tasklet.intf.parse(entries, refs[i]);

display_bibitems(entries);

}

The state of the application, stored in the global variable entries, represents
all the entries of the BIBTEX file. Right after the page is loaded and the tasklet
is created, function onLoadtasklet will be called, which parses the bibliography
items. First, it creates the initial state by calling the init interface function,
then the bibliography items are parsed and added to the state one by one using
the parse interface function of the tasklet. Parsing is performed in such a “per
item” basis as a precaution only – otherwise, in the case of a long bibliography
list, like that of Rinus Plasmeijer, parsing might run out of stack.

Whenever the user interacts with our application, namely when the search
button on the web page is pressed, function search will be called. It filters the
bibliography items, again using interface functions of the tasklet.

function search(){

var selected = entries;

var year = document.getElementById("year").value;

if( year != "" ) selected = tasklet.intf.filter(selected,"year",year);

// similarly for entry type and author

var keyword = document.getElementById("keyword").value;

if( keyword != "" ) selected = tasklet.intf.search(selected, keyword);

display_bibitems(selected);

}



Similarly to the syntax highlighter, this tasklet is also stateless and provides no
GUI. It does not make use of eventqueue either.

bibtex = mkInterfaceTask (initially Void)
[ InterfaceFun "init" initI

, InterfaceFun "parse" parseI

, InterfaceFun "toString" toStringI

, InterfaceFun "filter" filterI

, InterfaceFun "search" keywordI]

The interface functions of the tasklet have a similar structure to that of
annotateI in the previous example. The only argument they use is the one of
type Maybe Dynamic, on which they pattern match. The filter method calls
in the JavaScript code, for instance, has three actual arguments, therefore the
dynamic in the corresponding Clean function, filterI, should be a triple.

filterI (Just dynArg) st eventqueue = (dynamic res, st, eventqueue)
where res = case dynArg of

((entries,tag,value) :: ([Entry] ,String,String))
= filterEntries entries tag value

Section 4 will explain why res, the result from filtering is wrapped in a dynamic.

3.3 Even more state and even more interaction

In the BIBTEX example, the state of the application was stored in the code
written in JavaScript, and the internal state of the tasklet was Void. Our next
challenge is to write a game for solving Rubik’s cube – but now in this application
a stateful tasklet will be used. Similarly to the previous examples, the tasklet
will have neither a GUI nor an observable state, and it will provide interface
functions available for the controlling JavaScript side of the code.

The level of interactivity is much higher in this example than in the previous
one. The Rubik cube is controlled by moving the mouse and by pressing some
keys; the cube is rendered (Fig. 2) on-the-fly by the Clean side of the code when

Fig. 2. Rubik’s cube rendered in Clean, drawn by JavaScript



its state is changed. Another interesting issue in this example is how information
flows between the pure Clean side of the code and the impure JavaScript side.
Although the tasklet depends on information from the outer environment (the
browser), and has an impact on its environment as well, referential transparency
is not violated.

This is achieved by using a technique we call the method of the blind chess
player. A blind chess player cannot observe the chessboard in any way, only
possesses a mental picture, an inner representation of the board. The blind chess
player depends on an independent observer to announce the movements. The
blind chess player cannot even move the pieces directly, but can ask someone to
carry out the movement. The first sign of using this technique is that from the
nine interface functions of the tasklet, eight are merely used to delegate events.
When such an event is delivered, the inner state of the tasklet is updated, the
cube is re-rendered, and finally displayed.

rubik = mkInterfaceTask (initially (State standard (pi/10.0,pi/10.0,0.0) Nothing))
[ InterfaceFun "display" displayI

, InterfaceFun "mouseDown" mouseDownI

, InterfaceFun "mouseUp" mouseUpI

, InterfaceFun "mouseMove" mouseMoveI

, InterfaceFun "turnLeft" (turnI fst left)
, InterfaceFun "turnRight" (turnI fst right)
, InterfaceFun "turnUp" (turnI snd up)
, InterfaceFun "turnDown" (turnI snd down)
]

:: R3 :== (Real,Real,Real)
:: Color :== String

:: Cube :== (R3 → Color)
:: State = State Cube R3 (Maybe (Int,Int))

The internal state of the tasklet will keep track of the actual configuration of
the cube (initially it is the “standard” configuration, explained a bit later), an
angle describing the viewpoint of the user (R3), and the mouse coordinates if
the mouse is pressed (initially it is not). Note that the second and the third
components in the internal state of the tasklet describe the state of the user
interface.

To model Rubik’s cube, we follow Péter Diviánszky.2 The cube is placed
in such a way that its size is 3 × 3 × 3, its middle point is the origin of the
Cartesian coordinate system and its edges are parallel to the axes. The repre-
sentation is given as a partial function R3 → Color, which assigns a color to
the middle point of each of the 6 × 9 small faces of the cube. The operations,
namely rotating the cube and twisting one of the 6 layers, can be implemented
by composing functions that describe coordinate transformations, for instance
left (x,y,z) = (z,y,~x). The initial, standard configuration can be given in
the following way.

2 http://pnyf.inf.elte.hu/fp/Rubik_en.xml



standard (x,y,z)
| abs x > abs y && abs x > abs z = if (x < 0.0) "green" "blue"

| abs y > abs x && abs y > abs z = if (y < 0.0) "yellow" "white"

| otherwise = if (z < 0.0) "orange" "red"

Now we come to an essential question, namely how to display this cube from
a pure environment. A trivial solution would be to return the list of polygons
from an interface function and let the JavaScript side to display it. However, that
would clutter the interface of the tasklet and would move a substantial part of
the algorithm from Clean to JavaScript. Therefore, another solution was chosen:
the tasklets are allowed to fire events just as arbitrary JavaScript objects can
do. In the JavaScript side, functions can be subscribed to these events.

tasklet.addListener("draw", function(event){

var v = event.value;

var color = v[1];

var p1 = v[0][0];

...

drawPolygon(p1,p2,p3,p4,color);

}

The displayI interface function computes a 2D projection of the cube from the
viewpoint of the user (polygons), asks the JavaScript side to clear the display,
and asks it again and again to draw each polygon with the appropriate color.
To achieve this, the function fires events clear and draw.

displayI :: (Maybe Dynamic) State *EventQueue → *(Void, State, *EventQueue)
displayI Nothing st=:(State cube angle _) eventqueue

# eventqueue = fireEvent eventqueue "clear" Void

# eventqueue = foldl (λq p → fireEvent q "draw" p) eventqueue polygons

= (Void, st, eventqueue)
where polygons = project cube angle

In Clean unique types (*EventQueue here) are used to thread effectful compu-
tations in a pure functional way. Since fireEvent interacts with the outside
world, namely with the user interface of our application, a “new event queue”
is formed after each invocation of fireEvent, and the previous event queue is
“consumed”. However, this is not enough to preserve referential transparency.
What is missing is that events are not allowed to interfere with the interface
function that triggers them. No return value is coming back to the Clean side
from the JavaScript function(s) triggered by an event, and there is no means to
access the outside world from the Clean side other than through the parameters
of the interface functions. Type *EventQueue is abstract; it can only be used to
ensure that events are delivered, and to define the order of event delivery. Due to
this mechanism, the meaning of an interface function does not depend on when
the event handlers are executed in the JavaScript side. They can be executed
either interleaved with the Clean side of the code (i.e. by synchronous method
calls) or asynchronously, after the completion of the interface function.



The division of labour described above is advantageous: pure definitions are
written in Clean, while in JavaScript only the control and the effectful user in-
teractions are implemented. In this application, for example, the JavaScript side
is responsible for drawing polygons (it is straightforward in JavaScript using its
browser-independent primitives), for capturing pressed keys and mouse events,
and for doing some hacks to make the application work with different browsers.
Altogether the JavaScript side is made up of a few dozens of effective lines of
code here, such as the one catching key events.

function key(event){

switch(event.charCode){

case 119: tasklet.intf.turnUp(); break;

case 97: tasklet.intf.turnLeft(); break;

case 115: tasklet.intf.turnDown(); break;

case 100: tasklet.intf.turnRight(); break;

}

}

Most of the application, that is, roughly 200 effective lines of code, is written in
Clean. All the decisions, all the difficult parts are in the Clean side. For instance,
those interface functions of the tasklet which are partial applications of turnI
make decisions on what to do with the key events based on the tasklet state, viz.
whether rotate the cube (if the mouse button is not pressed) or twist a layer (if
the mouse button is pressed over a polygon which belongs to the 2D projection
of a layer of the cube).

turnI _ rotation Nothing st=:(State cube angle Nothing) eventqueue

= displayI Nothing (State (cube o rotation) angle Nothing) eventqueue

turnI selector rotation Nothing st=:(State cube angle (Just coord)) eventqueue

= displayI Nothing (State new_cube angle (Just coord)) eventqueue

where polygons = project cube angle

new_cube = case (select_layer polygons coord) of
Nothing = cube

Just layer = twist cube layer selector rotation

Some details of the definition are left uncovered here, and some other details were
left out completely in order to increase readability – for the precise definitions
the Reader can look up the code of the example on the web.3

4 Type correspondence in parameter passing

The communication between the JavaScript side and the Clean side of the code
is bidirectional. The JavaScript side calls the interface functions of tasklets,
passing arguments and expecting results. Moreover, the Clean side fires events,
with parameters attached, and the JavaScript side may observe these events and
receives their attached parameters. In both cases information exchange between
the two sides is achieved through pass-by-value parameters and, in the first case,

3 http://people.inf.elte.hu/dlacko/papers/rapmix/rubiksource.html



through pass-by-value return values. The proper transmission of data requires a
consequent correspondence between Clean types and JavaScript types. Certain
types carry over between the two languages quite straightforwardly, others need
special encoding.

It must be emphasized, however, that when we talk about the Clean side of
the code, we actually mean some JavaScript code that was generated from Clean
code by our cross-compiler. For clarity, we will refer here to the JavaScript side
of the application as JS code, and to the code generated from the Clean side as
JS* code. JS* uses a special run-time encoding of Clean types. For details on
this encoding, the Reader is referred to [5].

To facilitate information exchange between Clean and JavaScript, a conver-
sion from the JS* encoded values to JS is provided. The programmer could use
the JS* encoded values in the JS code directly, but the structure of the encoded
values is quite unnatural. Therefore, our runtime environment converts JS* val-
ues to JS values that are easier to use. As the examples in section 3 revealed,
(1) during conversion primitive types are preserved; (2) the encoding of lists and
tuples of Clean are converted to arrays; (3) algebraic types are also represented
by arrays, where the name of a data constructor is stored in the first element
of such an array. The conversion of functions in JS* to JS is not supported in
the current version of the system. Handling partially applied functions and lazy
arguments would demand special care of these values on the JS side, which, in
our opinion, is not worth the effort.

The opposite direction, however, is not that simple. Clean has a much richer
type system than JavaScript, thus JS values cannot be converted to JS* un-
equivocally. A further problem is that JavaScript is dynamically typed, and thus
special care must be taken to avoid passing values of wrong type from JS to
JS* and prevent run-time errors. Due to laziness, these run-time errors would
emerge in the most unexpected moments.

A solution to overcome these problems is based on the dynamics feature of
Clean. A value of an arbitrary Clean type can be converted to the special type
Dynamic, then later the value of such a dynamic can be extracted by run-time
pattern matching on the enclosed type using an algorithm called type unification.

When a value is passed from JS to JS*, the run-time environment tries to
convert it to a Dynamic first. Obviously, this cannot be done in every case, but
using the following (conservative) unification rules the most frequently occurring
cases are covered.

1. JS booleans can be unified with Clean Bools.
2. Although JS has no special character type, strings of one length can be

unified with Char in Clean.
3. There are no separate integer and floating point types in JS, a JS integer

value can be unified with both Int and Real in Clean.
4. Non-integer numbers can be unified with Clean Reals only.
5. JS strings can be unified with the String type of Clean.
6. An array of JS values can be unified with a Clean list type, if

(a) all of its elements can be determined by the preceding rules,



(b) they have the same type, and
(c) this type is equivalent with the type parameter of the Clean list.

7. In all other cases type unification fails.

Finally, there is one more important case to consider. As the BIBTEX example
revealed, it can be very useful to allow passing JS* values of some intricate type
to JS as a state. Such a value is not supposed to be used directly by the JS code,
it is only to be passed around between interface calls. Unfortunately, the JS* to
JS to JS* conversion of such an intricate value would destroy the original type.
In this case we allow the JS* code to pass a Clean Dynamic to JS. The run-time
environment detects whether a value has type Dynamic and does not convert it
into a JS value. When such a Dynamic is passed from JS to JS*, the run-time
detects again its special nature, and does not try to recognize the type of the JS
value, but uses its original Clean type (generated by the dynamic keyword) for
type unification.

5 Related work

Compilation of traditional programming languages to JavaScript has drawn
much attention in the last few years as client-side processing for Internet ap-
plications has been gaining importance. Virtually every modern language has
some kind of technology which allows its client-side execution – see [2] for an
overview.

An interesting approach to avoid the usage of JavaScript, is the so called
single-language compilation technique. Single-language systems allow the devel-
opment of all tiers of a whole client-server application in the same language.
Those parts of the application which are needed on the client are automatically
transformed to JavaScript, while the other parts are compiled to some server-side
binary. Communication between the client and the server can be transparent.
The most mainstream example is GWT [9] for Java. As for functional languages,
the prominent representatives of this approach are Links [3] and Hop [11]. A no-
table advantage of single-language systems is that the whole application can be
type checked. However, mixed-languages solutions, like ours, are also advanta-
geous: one can use the best of all languages. GWT, for instance, also makes it
possible to export libraries as well [12].

In this section we are particularly interested in compiler technologies for lazy
functional languages, paying special attention to the deployment process and the
possibilities of interacting with JavaScript.

UHC-JS is the JavaScript backend of the Utrecht Haskell Compiler [4]. Al-
though it is still in beta stage, it can already successfully compile a fair amount
of Haskell programs. Its main advantage is that the generated JavaScript code
is acceptably small, albeit relatively slow. Compilation can either proceed in a
per-module basis or the modules can be linked together using source code level
linking. Unfortunately, in the second case the whole application has to be com-
piled, and the start expression cannot be specified. Its abilities to interact with
JavaScript are very limited. In fact, they are restricted to a standard foreign



function interface (FFI) and some DOM manipulation libraries implemented
above it.

The Fay language [7] has a unique approach – namely, it does not utilize
a Haskell compiler for preprocessing, but directly parses Haskell source code
using third party libraries, and generates JavaScript code from the abstract
syntax tree. As a consequence, Fay supports only a limited subset of the Haskell
language, which makes it less appealing for us. JavaScript interoperability is
enabled through a trivial foreign function interface.

GHCJS [13] is the most promising compiler technology among those dis-
cussed here. However, it has a rather heavyweight approach compared to our
solution. It compiles most Haskell libraries without a problem, but suffers from
a relatively slow engine (an advanced engine is under development) and huge
code footprint. It uses GHC as a front end, and JavaScript code is generated
from the resulting STG. Complete interactive applications can be developed us-
ing GHCJS through non-standard support libraries, such as WebKit, bindings
for WebKitGTK+, which provide a low level DOM interface, and different low
and high level interfaces for JavaScriptCore. Unfortunately, due to the use of
these libraries, even the most trivial application will consist of several hundred
kB (or even MB) of JavaScript. On the other hand, these libraries enable the
most advanced JavaScript interoperability among the compilers of study. Be-
sides the ubiquitous FFI support, GHCJS enables callbacks to the Haskell code
as well. Type safety of these calls are ensured, but limited to primitive types,
like Numbers, Booleans and Strings. Furthermore, GHCJS utilizes an algebraic
data type to deal with JavaScript values – this is highly limited compared to our
Dynamic-based approach. The deployment process is overcomplicated, several
JavaScript files are generated, and have to be included in the final application
along with numerous pre-compiled libraries.

Finally, the Haste compiler [8] is a relatively new approach aiming at small
code footprint and a fast engine. Currently it compiles only full applications,
which sets a limit on its applicability. Haste supports calling JavaScript functions
from Haskell through a standard foreign function interface.

In summary, the cross-compilers studied in this section stress the quality of
compilation and the compiler infrastructure, but place no particular emphasis
on deployment, and on integration of the generated code into a larger appli-
cation. None of them provide a simple way for the inclusion of the generated
JavaScript code into a web application as a library, and only one of them, the
GHCJS, enables callbacks to the Haskell code through a type safe, albeit limited,
interface.

6 Conclusions

In this paper an extension to iTask and Tasklets has been presented, which en-
ables rapid client-side web development with Clean. The solution is basically an
unorthodox application of the iTask system, which in this way becomes an ap-
plication server for client-side web applications. The presented method, in terms



of deployment and integration, makes web development in Clean a competitive
alternative to development directly in JavaScript. In terms of productivity, the
balance is clearly tilted towards programming in Clean.

A mixed-language programming model has been proposed, where different
parts of a web-application are written partly in Clean, and partly in JavaScript,
making the best use of the two languages. Bidirectional communication between
the two languages was a major concern. A particular strength of the ideas pre-
sented here is that instead of compiling a whole application to JavaScript, we
propose to compile libraries (call-in) or components (call-in/call-out) only – the
latter is achieved through events triggered by the Clean side of the applications.

Our approach enables the use of special interface and event handler functions.
Furthermore, the communication interface is well typed from the point of view of
the Clean code, which is achieved by the Dynamic feature of the Clean language.
The applicability of the proposal has been proven through a series of carefully
selected non-trivial examples.

The technology described here can be generalized in at least two ways. First,
languages other than Clean can be used for writing the main body of applica-
tions. Our Clean to JavaScript compiler uses Sapl [5] (one of the core languages
of Clean) as an intermediate language. A Haskell to Sapl compiler is currently
under development. Besides writing a small server-side application for run-time
source code level linking of Sapl and the compilation of the result to JavaScript,
one technical problem must be solved: to obtain dynamically the Sapl source
code of an arbitrary expression. This would make Haskell a proper replacement
for Clean here.

The second option for generalization is due to the loosely-coupled communi-
cation interface between the Clean-side and the control-side of the applications.
One could use platforms other than the web as a run-time environment, i.e.
platforms supporting JavaScript. Such platforms are, for instance, Android and
iOS, where the control logic could be implemented in Java or Objective-C, re-
spectively; the JavaScript code generated from Clean could be used without any
modifications.
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